فایل ورد کامل گزارش کارآموزی درباره تنظیمکنندههای ولتاژ، ژنراتور و ماشینهای جریان متناوب (AC)؛ بررسی اصول طراحی و کاربردهای صنعتی
توجه : به همراه فایل word این محصول فایل پاورپوینت (PowerPoint) و اسلاید های آن به صورت هدیه ارائه خواهد شد
فایل ورد کامل گزارش کارآموزی درباره تنظیمکنندههای ولتاژ، ژنراتور و ماشینهای جریان متناوب (AC)؛ بررسی اصول طراحی و کاربردهای صنعتی دارای ۱۶۵ صفحه می باشد و دارای تنظیمات در microsoft word می باشد و آماده پرینت یا چاپ است
فایل ورد فایل ورد کامل گزارش کارآموزی درباره تنظیمکنندههای ولتاژ، ژنراتور و ماشینهای جریان متناوب (AC)؛ بررسی اصول طراحی و کاربردهای صنعتی کاملا فرمت بندی و تنظیم شده در استاندارد دانشگاه و مراکز دولتی می باشد.
این پروژه توسط مرکز فایل ورد کامل گزارش کارآموزی درباره تنظیمکنندههای ولتاژ، ژنراتور و ماشینهای جریان متناوب (AC)؛ بررسی اصول طراحی و کاربردهای صنعتی۲ ارائه میگردد
توجه : در صورت مشاهده بهم ریختگی احتمالی در متون زیر ،دلیل ان کپی کردن این مطالب از داخل فایل ورد می باشد و در فایل اصلی فایل ورد کامل گزارش کارآموزی درباره تنظیمکنندههای ولتاژ، ژنراتور و ماشینهای جریان متناوب (AC)؛ بررسی اصول طراحی و کاربردهای صنعتی،به هیچ وجه بهم ریختگی وجود ندارد
بخشی از متن فایل ورد کامل گزارش کارآموزی درباره تنظیمکنندههای ولتاژ، ژنراتور و ماشینهای جریان متناوب (AC)؛ بررسی اصول طراحی و کاربردهای صنعتی :
فایل ورد کامل گزارش کارآموزی درباره تنظیمکنندههای ولتاژ، ژنراتور و ماشینهای جریان متناوب (AC)؛ بررسی اصول طراحی و کاربردهای صنعتی
فهرست مطالب
عنوان صفحه
ماشینهای ac 1
نقش acدر سنکرون ها ۳
اتصالات در سیستم ac 11
مبدل های ac 12
قسمتهای مختلف یک تنظیم کننده ۲۰
مباحث کلی در مورد فیلتر ۲۵
تقویت کننده dc 34
مدار محدود کننده مدار ۳۷
تنظیم کننده های ولتاژ کلیدی ۴۹
ژنراتورها ۵۲
تنظیم فلوی آب ۵۸
تعمیرات برنامه ریزی شده توربین ۶۰
اندازه گیریهای کلیرنس ۷۴
برنامه ریزی بازرسی با بورسکوپ ۸۱
بازرسی احتراق ۸۵
دمونتاژوالو ۹۴
چک فلوی هوای نوزل سوخت ۱۱۱
حدهای بازرسی در مورد فلواسلیو ۱۲۸
ونتاژ ۱۳۷
ماشینهای AC
ماشینها لوازمی هستند که می توانند انرژی الکتریکی را به انرژی مکانیکی و یا بالعکس تبدیل کنند ، از اینرو بدانها مبدلهای ( Converters ) انرژی الکترو دینامیکی گفته می شود . برخی از مبدلها مانند موتورها و ژنراتورها حرکت دورانی دارند و برخی از آنها همچون رله ها ، عمل کننده ها ( Actuator ) ، محرک ها ، حرکت انتقالی یا خطی دارند . یک موتور( Motor ) الکتریکی وسیله ای است که بتواند انرژی الکتریکی را به انرژی مکانیکی تبدیل کند و یک ژنراتور ( Generator ) وسیله ای است که انرژی مکانیکی را به انرژی الکتریکی تبدیل می سازد . ترانسفورماتور ( Transformer ) نیز وسیله ای است که انرژی متناوب در یک میزان ولتاژ را به انرژی الکتریکی در میزان ولتاژ دیگر تبدیل می کند .
در حالت ژنراتوری رتور ( قسمت محرک ماشین ) توسط محرک اولیه بچرخش در می آید . با چرخش در آمدن هادیهای رتور در آنها بخاطر وجود میدان مغناطیسی ، ولتاژ الغا می گردد . اگر بارالکتریکی به سیم پیچ حاصله توسط این هادی ها وصل گردد جریان جاری می شود و توان الکتریکی به مصرف کننده تزریق خواهد شد.
ژنراتورها به دسته های گوناگونی تقسیم می شوند ، از جمله
(۱) ژنراتورهای Dc که خود آن به دسته های زیر تقسیم می شود :
۱- ژنراتور با تحریک جداگانه ( Seperatly Excited )
۲- ژنراتور شنت ( Shunt )
۳- ژنراتور سری
۴- ژنراتور کمپوند ( Compound ) اضافی
۵- ژنراتور کمپوند نقصانی
در ماشینهای Dc سیم پیچ تحریک ( Field Winding )( سیم پیچ میدان ) بر روی استاتور ( Stator ) قرار دارد و رتور ( Rotor ) حاوی سیم پیچ آرمیچر است . ولتاژ القا شده در سیم پیچی آرمیچر یک ولتاژ متناوب ( Ac ) است از اینرو برای یکسو کردن ولتاژ متناور در ترمینال رتور از کموتاتور ( Commutator ) و جاروبک ها ( Brush ) و یا یکسو سازها ( Rectifier ) استفاده می شود . از اینرو انواع مختلف ژنراتور های Dc از نظر مشخصه های ترمینالشان ( ولتاژ- جریان ) با یکدیگر فرق دارند و بسته به مورد استفاده ژنراتور مناسب را انتخاب می کنند .
ماشینهای Ac ، ژنراتورهایی هستند که انرژی مکانیکی را به انرژی الکتریکی Ac تبدیل می کنند . و موتورهایی هستند که انرژی الکتریکی Ac را به انرژی مکانیکی تبدیل می سازد . ماشینهای Ac بیشتر به دو دسته ماشینهای سنکرون و ماشینهای القایی ( آسنکرون ) تقسیم می شوند .
نقش AC در سنکرون ها
ماشینهای سنکرون موتورها و یا ژنراتورهایی هستند که جریان قدرت آنها توسط منبع قدرت Dc تامین می شود در صورتیکه ماشینهای القایی ، موتورها و یا ژنراتورهایی هستند که جریان میدان آنها توسط عمل ترانسفورماتوری ( القای مغناطیسی ) در سیمپیچهای میدان برقرار می شود .
۲) ژنراتورهای سنکرون ( Synchronous Generator ) :
ژنراتورهای سنکرون یا مولدهای متناوب ، قدرت مکانیکی را به قدرت الکتریکی Ac تبدیل می کنند . در یک ژنراتور سنکرون ، جریان Dc به سیم پیچ روتور ، که میدان مغناطیسی روتور را تولید می کند اعمال می شود . ( روش تغذیه قدرت می تواند یا از یک منبع Dc خارجی توسط حلقه های لغزان و جاروبک ها ( Brush ) و یا مستقیماً روی محور ژنراتور سنکرون و از یک منبع قدرت Dc خاص باشد ) سپس روتور ژنراتور توسط یک محرک اولیه چرخانده شده و یک میدان مغناطیسی چرخان در ماشین تولید می کند . این میدان مغناطیسی چرخان سیستم ولتاژ سه فاز در سیم پیچ های استاتور ژنراتور القا می نماید . جریان آرمیچر در این ماشینها شارگردانی در شکاف هوایی پدید می آورد که سرعت دوران این شار با سرعت چرخش روتور برابر است و لذا به این ماشینها لفظ سنکرون ( همزمان ) اطلاق می گردد .قطب های مغناطیسی روی روتور می تواند برجسته ( Salient Pole ) که ( برای روتورهای با چهار قطب یا بیشتر ) و یا صاف ( برای روتورهای دو و یا چهار قطبه ) باشند
۳) ژنراتورهای آسنکرون ( القایی ) ( Induction Generator ) :
ماشینهای القایی ( Induction Motors ) ماشینهایی هستند که ولتاژ روتور ( که جریان روتور و میدان مغناطیسی روتور را تولید می کند ) از طریق القا در سیم پیچ روتور ظاهر می شود نه اینکه توسط سیمهایی بدان متصل شود . ماشینهای القایی تقریباً در تمامی موارد در حالت موتوری مورد استفاده قرار می گیرند و حالت ژنراتوری آن به دلیل معایب بسیار بندرت بکار برده می شود .
درایو های Vacon AC برای OEMها
OEM به شرکتی اطلاق می گردد که از مبدل فرکانس بعنوان بخشی از تجهیزاتی که تولید می کند استفاده می نماید.
و کن برای OEM هایی که به بهبود عملکرد تجهیزات تولیدی خود می اندیشند ، یک سری راه حل های درایو AC ولتاژ پایین سازگار با محصول ارائه می دهد تا نیازهای آنها را بصورت قابل قبولی بر طرف سازد.
یک مشتری VACON ، در واقع تولید کننده ای را انتخاب می کند که متمرکز اصلی آن برروی درایو همراه با
– تیمی مشتری مدار
– عملکرد مشتری مدار
– کوشش در جهت توسعه محصول
– شبکه ای جهانی جهت پشتیبانی مشتریان OEM می باشد.
به چند نمونه از دستاوردهای ما در صنایع مختلف نظری بیافکنید:
– درایو های وکن تولید محصولات با کیفیت در کارخانه لبنیات Valio کمک می کند .
درایوهای وکن ماشین آلات انتقال و کانوایر ها را در کارخانه لبنیات Valio در شهر Riihimaki در فنلاند کنترل می کنند .
Valio بیشترین حجم معاملات را در صنعت لبنیات در فنلاند دارا می باشد . Valio پیشگام تولید لبنیات در سطح جهان می باشد.
– درایو های AC مدیریت پروسه را بهبود بخشیده اند :
در کارخانه لبنیات Riihimaki حدود ۱۰۰ دستگاه درایو Vacon NXL در رنج توانی ۰.۷۵ – 15 KW بکار رفته است درایو های وکن سرعت ماشین آلات انتقال و کانوایر ها را کنترل می کنند. کنترل سرعت متناسب با نیاز ، موجب بهبود کنترل پروسه می گردد . آقای Juha Lahtinen از واحد طراحی اتوماسیون شرکت Pesmel که تامین کننده کانوایرها و ماشین های انتقال در Valio می باشد ، می گویند : کانوایرها چنان یکنواخت استارت کرده و حرکت می کنند که بسته ها در طول کانوایر سقوط نمی کنند . ما به دلیل کیفیت و قیمت مناسب ، وکن را انتخاب کردیم و از خدمات رسانی وکن بسیار راضی هستیم.
شرکت Pesmel از درایو های Vacon NXL در کاربردهایی نظیر Hoisting (بالابر) و Motion Control (کنترل حرکت) نیز استفاده کرده است. درایو های وکن از طریق پروفی باس کنترل شده و کنترل و نظرات بر پروسه را امکان پذیر ساخته اند . انرژی بازگشتی از موتور کانوایرها در هنگام ترمز به مقاومتهای ترمز هدایت می شوند.
آقای Heikki Sirkesalo مسئول ماشین آلات موجود در انبار Valio می گوید : انبار و کارخانه لبنیات مانند یک یخچال غول پیکر است ، با این وجود دمای پایین ثابت +۴C هیچ مشکلی در ماشین آلات الکتریکی ایجاد نمی کند .
کنترل خط جدید توسط درایو وکن
Mirka تصمیم دارد در خط تولید جدید خود از درایو های NXP برای کنترل باز کردن و پیچیدن رولها و از درایوهای NXL برای کنترل فنها و دستگاه های تنظیم برش استفاده نمایند .
مولدهای AC یا آلترناتورها درست مثل مولدهای dc بر اساس القاء الکترومغناطیسی کار می کنند ، آنها نیز شامل یک سیم پیچ آرمیچر ویک میدان مغناطیسی هستند. اما یک اختلاف مهم بین این دو وجود دارد : درحالی که در ژنراتورهای dc آرمیچر چرخیده می شود وسیستم میدان ثابت است در آلترناتورها آرایش عکس وجود دارد.
یک موتور سنکرون از نظر الکتریکی مشابه یک آلترناتور یا ژنراتور ac می باشد در حقیقت از نظر تئوری یک ماشین سنکرون می تواند به عنوان آلترناتور استفاده گردد که به طور مکانیکی راه اندازی شده و یا به عنوان موتوری استفاده گردد که به صورت الکتریکی راه اندازی شده باشد.بیشتر موتورهای سنکرون دارای مقدار نامی ۱۵۰ کیلو وات تا ۱۵ مگاوات بوده ودارای محدوده سرعتی rpm150 تا rpm1800 کار میکنند .بعضی از خواص مشخصه ی یک موتور سنکرون که جالب توجه است عبارتند از :
۱- هم در سرعت سنکرون کار می کند وهم کار نمی کند یعنی در حال کار سرعترا ثابت نگه می دارد . تنها روش برای تغییر سرعت آن تغییر دادن در فرکانس تغذیه می باشد.
۲- ذاتا خود راه انداز نبوده و مجبور استتا سرعت سنکرون با استفاده از وسیله خاص تا رسیدن به حالت سنکرون به حرکت در آید.
۳- توانایی عمل کردن در محدوده ی وسیعی از ضریب قدرت های پس فاز و پیش فاز رادارد . لذا می تواند برای مقاصد تصحیح توان و به علاوه برا تغذیه گشتاور وراه اندازی بارها استفاده گردد.
مزایای استفاده از خطوط مستقیم در مقابل متناوب
بزرگترین مزیت سیستم جریان مستقیم, امکان انتقال مقدار زیادی انرژی در مسافتهای زیاد است و با تلفات کمتر (در مقیسه با روش انتقال DC) است. بدین ترتیب امکان استفاده از منابع و نیروگاههای دور افتاده مخصوصا در سرزمینهای پهناور به وجود میآید.
برخی از شرایطی که استفاده از سیستم HVDC بهصرفهتر از انتقال AC است عبارتاند از:
کابلهای زیرآبی, به ویژه زمانی که به علت بالا بودن میزان توان خازنی(capacitance), تلفات در سیستم AC بیش از حد زیاد میشود.(برای مثال شبکه کابلی دریای بالتیک به طول ۲۵۰ کیلومتر بین آلمان و سوئد)
انتقال در مسافتهای طولانی و در مکانهای بنبست به طوری که در یک مسیر طولانی شبکه فاقد هیچگونه اتصال به مصرف کنندهها یا دیگر تولید کنندهها باشد.
افزایش ظرفیت شبکهای که به علت برخی ملاحظات امکان افزایش سیم در آن پر هزینه یا غیر ممکن است.
اتصال دو شبکه AC ناهماهنگ که در حالت AC امکان برقراری اتصال در آنها وجود ندارد.
کاهش دادن سطح مقطع سیم مصرفی و همچنین دیگر تجهیزات لازم برای برپاکردن یک شبکه انتقال در یک توان مشخص.
اتصال نیروگاههای دور افتاره مانند سدها به شبکه الکتریکی.
خطوط طولانی زیرآبی دارای ظزفیت خازنی زیادی هستند. در سیستم DC این ظرفیت خازنی تأثیر کمی بر روی عملکرد شبکه دارد اما از انجایی که در مدارهای AC, خازن در مدار تقریباً به صورت یک مقاومت عمل میکند ظرفیت خازنی در خطوط زیرآبی موجب ایجادشدن تلفات اضافی در مدار میشود و این استفاده از جریان DC را رد خطوط زیر آبی به صرفه میکند.
در حالت کلی نیز جریان DC قادر به جابجایی توان بیشتری نسبت به جریان AC است چراکه ولتاژ ثابت در DC از ولتاژ پیک در AC کمتر است و بدین ترتیب نیاز به استفاده از عایقبندی کمتر و همچنین فاصله کمتر در بین هادیها است که این عمر موجب سبک شدن هادی و کابل و همچنین امکان استفاده از هادیهای بیشتر در یک محیط مشخص میشود و همچنین هزینه انتقال به صورت DC کاهش مییابد.
افزایش ثبات یک شبکه
از آنجایی که سیستم HVDC به دو شبکه ناهماهنگ AC امکان میدهد تا بهم اتصال یابند, این سیستم میتواند موجب افزایش ثبات در شبکه شود و از ایجاد پدیدهای به نام «آبشار خطاها» (Cascading failure) جلوگیری کند. این پدیده زمانی به وجود میآید که به علت بروز خطا در قسمتی از شبکه کل یا قسمتی از بار این بخش به بخش دیگری انتقال داده میشود و این بار اضافه موجب ایجاد خطا در قسمت دیگر شده و یا این بخش را در خطر قرار میدهد که به این ترتیب بار این بخش هم به قسمت دیگری انتقال داده میشود و این حالت ادامه پیدا میکند. مزیت شبکه HVDC دراین است که تغییرات در بار که موجب ناهماهنگی در شبکههای AC میشود تأثیرات مشابهی را بروی شبکه HVDC نمیگذارد, چراکه توان و مسیر جاری شدن آن در سیستم HVDC قابل کنترل است و در صورت نیاز قابلیت کنترل اضافه بار در شبکه AC را دارد. این یکی از دلایل مهم تمایل برای ساخت این گونه شبکههاست.
معایب
مهمترین عیب این سیستم گران بودن مبدلها و همچنین محدودیت آنها در مقابل اضافه بارها است همچنین در خطوط کوتاه تلفات به وجود آمده در مبدلها از یک شبکه AC با همان طول بیشتر است, بنابر این این سیستم در مسافتهای کوتاه کاربردی ندارد و یا ممکن است صرفه جویی به وجود آمده در تلفات نتواند هزینه بالای نصب مبدلها را جبران کند. در مقایسه با سیستمهای AC, کنترل این سیستم در قسمتهایی که شبکه دارای اتصالات زیادی است خیلی پیچیدهاست. کنترل توان جاری در یک شبکه پر اتصال DC نیازمند ارتباط قوی بین تمامی اتصالهاست چراکه هنواره باید توان جاری در شبکه کنترل شود.
هزینههای مربوط به انتقال DC
شرکتهای بزرگ ایجاد کننده این گونه خطوط مانند ABB یا Siemens هزینه مشخصی از اجرای طرحهای مشابه در مناطق مختلف اعلام نکردهاند چراکه این هزینه بیشتر یک توافق بین طرفین است. از طرف دیگر هزینه اجرای این گونه طرحها به طور گستردهای به خصوصیات پروژه مانند: میزان توان شبکه, طول خطوط, نوع شبکه(هوایی یا زیر زمینی), قیمت زمین در منطقه مورد بحث و… بستگی دارد.
با این حال برخی از شاغلین در این زمینه در این زمینه اطلاعاتی را بروز دادهاند که میتواند قابل اعتماد باشد. برای خط انتقال ۸ مگاواتی کانال انگلستان(English Channel) با طول تقریبی ۴۰ کیلومتر, هزینه مربوط به قرار داد اولیه به تقریباُ به صورت زیر است: (جدای از هزینههای مربوط به عملیات آماده سازی ساحل, هزینههای مربوط به مالکیت زمینها, هزینه بیمه مهندسین و…)
پستهای مبدل, باهزینه تقریبی ۱۱۰ میلیون پند
کابل زیرآبی+ نصب, با هزینه تقریبی ۱ میلیون پند به ازای هر کیلومتر
بنابراین برای احداث شبکه انتقال ۸ گیگاواتی در چهار خط, هزینهای تقریبی برابر ۷۵۰ میلیون پند نیاز است که باید دیگر هزینههای مرتبط با ساخت و بهرهبرداری خط به ارزش ۲۰۰ تا ۳۰۰ میلیون پند را هم به آن اضافه کرد.
اتصالات در سیستم AC
خطوط انتقال AC تنها میتوانند به خطوط AC که دارای فرکانس برابر و تطابق زمانی یا فازی هستند متصل شوند. خیلی از شبکههایی که به ایجاد اتصال تمایل دارند (مخصوصا شبکههای متعلق به دو کشور متفاوت) دارای شبکههای ناهماهنگ هستند. شبکه سراسری انگلستان و دیگر کشورهای اروپایی با فرکانس ۵۰ هرتز کار میکنند اما هماهنگ نیستند یا برای مثال در کشوری مثل ژاپن شبکهها ۵۰ یا ۶۰ هرتز هستند. در سراسر جهان مثالهای زیادی از این دست وجود دارد. در این حالت اتصال شبکهها به صورت AC غیرممکن یا پرهزینه است, اما در سیستم HVDC امکان ایجاد اتصال بین شبکههای این چنینی وجود دارد.
این امکان وجود دارد که ژنراتورهای وصل شده به یک شبکه انتقال بلند AC دچار بیثباتی شده و موجب اختلال در هماهنگی شبکه شوند. سیستم HVDC استفاده از ژنراتورهای نصب شده در مناطق دورافتاده را عملی میکند. ژنراتورهای بادی مستقر در مناطق دور افتاده با استفاده از این سیستم میتوانند بدون اینکه خطر ایجاد ناهماهنگی در شبکه به وجود آورند به شبکه اتصال یابند.
به طورکلی گرچه HVDC امکان اتصال دو شبکه متفاوت AC را فراهم میکند اما هزینه ماشینآلات و تجهیزات مبدل از AC به DC و برعکس واقعاً قابل توجه است, بنابراین استفاده از این سیستم بیشتر در شبکههایی که توجیه اقتصادی داشته باشد انجام میگیرد(مسافت دارای توجیه پذیری اقتصادی در سیستم HVDC برای خطوط زیر آبی در حدود ۵۰ کیلومتر و برای شبکههای هوایی بین ۶۰۰ تا ۸۰۰ کیلومتر است).
مبدلهای AC
اجزای مبدلها
در گذشته مبدلهای HVDC از یکسوکنندههای قوس جیوه که غیر قابل اطمینان بودند, برای انجام یکسوسازی استفاده میکردند و هنوز هم استفاده از این یکسوسازها در برخی مبدلهای قدیمی ادامه دارد. از درگاههای تیریستوری اولین بار در دهه ۱۹۶۰ برای یکسو سازی استفاده شد. تریستور نوعی قطعه نیمههادی شبیه دیود است, با این تفاوت که دارای یک پایه اضافی برای کنترل جریان عبوری است. امروزه از IGBT که نوعی تریستور است نیز برای یکسو سازی استفاده میشود. این قطعه دارای قابلیتهای بهتری از تریستورهای عادی است و کنترل آن اسانتر است که قابلیتها موجب کاهش یافت قیمت تمام شده یک درگاه میشود.
از انجایی که ولتاژ استفاده شده در سیستم HVDC در بسیاری موارد از ولتاژ شکست انواع نیمههادیها بیشتر است, برای ساخت مبدلهای HVDC از تعداد زیادی قطعات نیمه هادی به صورت سری استفاده میکنند.
سیستم کنترل ولتاژ که با ولتاژ نسبتاً پایینی کار میکند و وظیفه انتقال دستورات قطع یا وصل را به دیگر اجزا دارد باید به طور کامل از قسمت ولتاژ بالا جدا شود. این کار عموماً با استفاده از سیستمهای نوری انجام میپزیرد. در یک سیستم کنترل مرکب, قسمت کنترل برای انتقال دستورات از پالسهای نوری استفاده میکند. عمل حمل این پالسها به وسیله فیبرهای نوری انجام میگیرد.
عنصر کاملاً کنترل شده را بدون توجه به اجزای تشکیل دهنده, «درگاه» (valve) میناند.
مدار یکسوسازی سه فاز توسط شش تریستور
سیستم تبدیل از AC به DC و بر عکس
در سیستم HVDC تیدیل از AC به DC و بر عکس تقریباً با تجهیزات مشابهی انجام میشود و در بسیاری پستهای تبدیل, تجهیزات طوری نصب میشوند که بتوانند هر دو نقش را داشته باشند. قبل از وصل جریان AC به تجهیزات یکسوسازی ورودی مبدل از تعدادی ترانسفورماتور (ترانسفورماتور سربهسر)عبور میکند و سپس خروجی آنها به درگاههای یکسوسازی وارد میشود. دلیل استفاده از این ترانسفورماتورها ایزوله کردن پست تبدیل از شبکه AC و به وجود آوردن زمین (Earthing) داخلی است. در پست تبدیل وظیفه اصلی بر عهده درگاههاست. در سادهترین حالت یک یکسوساز از شش درگاه تشکیل شده است که دو به دو به فازهای AC متصل شدهاند. ساختمان یکسو ساز به صورتی است که هر درگاه در هر سیکل تنها در طول ۶۰ درجه هادی است و به این صورت وظیفه انتقال توان در هر سیکل ۳۶۰ درجهای به طور مساوی بین شش درگاه تقسیم میشود. با افزایش درگاهها تا ۱۲ عدد میتوان یکسوساز را طوری طراحی کرد که هر ۳۰ درجه درگاهها عوض شوند و بدین ترتیب ظرفیت یکسوسازی هر درگاه افزایش مییابد و هارمونیکهای تولیدی یکسوساز به شدت کاهش مییابند.
سروموتورهای AC همانطـور که قبلا ذکر شد انتخاب مناسبی برای کاربـــردهای با توان پایین هستند و به همین دلیل است که موتورهای AC همیشه به موتورهای DC ترجیح داده میشوند. مزایای سروموتورهای AC به سروموتورهای DC شامل موارد زیر است :
روتورهای قفس سنجابی ساده هستند و در مقایسه با سیم پیچی آرمیچر ماشینهای DC از نظر ساختاری ، محکمتر هستند.
سروموتورهای AC دارای جاروبک برای کموتاسیـون نیستنـد و نیاز به تعمیر ونگهداری دائم ندارند.
هیچ عایقی در اطراف هادی آرمیچر آنچنان که در موتور DC وجود دارد نیست پـس آرمیـچر می تواند بسیار بهتر گرما را پخش کند.
بدلیل اینکه آرمیـچر، سیـم پیچی های عایـق دار پیچـیده ای ندارد ، قطر آن می توانـد برای کاهش اینرسی روتور بسیار کاهش یابد . این امر به جلوگیری از Over Shoot در مکـانیسم سـرو کمک می کند .
سروموتورهای AC همانطـور که قبلا ذکر شد انتخاب مناسبی برای کاربـــردهای با توان پایین هستند و به همین دلیل است که موتورهای AC همیشه به موتورهای DC ترجیح داده میشوند. مزایای سروموتورهای AC به سروموتورهایDC شامل موارد زیر است :
روتورهای قفس سنجابی ساده هستند و در مقایسه با سیم پیچی آرمیچر ماشینهای DC از نظر ساختاری ، محکمتر هستند.
سروموتورهای AC دارای جاروبک برای کموتاسیـون نیستنـد و نیاز به تعمیر ونگهداری دائم ندارند.
هیچ عایقی در اطراف هادی آرمیچر آنچنان که در موتور DC وجود دارد نیست پـس آرمیـچر می تواند بسیار بهتر گرما را پخش کند.
بدلیل اینکه آرمیـچر، سیـم پیچی های عایـق دار پیچـیده ای ندارد ، قطر آن می توانـد برای کاهش اینرسی روتور بسیار کاهش یابد . این امر به جلوگیری از Over Shoot در مکـانیسم سـرو کمک می کند .
یک سروموتور AC اصولا یک موتور دوفاز القایی است به جز در مورد جنبههای خـاص طراحی آن.
توان مکانیکی خروجی یک سروموتور DC از ۲ وات تا چند صد وات تغییر می کند . مــوتورهای بزرگتر از این توان بسیار کم بازده اند واگربامشـخصات گشتـاور سرعت مطلوب ساخته شده باشند برای استفاده در کاربردهای سرو بسیار مشکل ساز خواهند شد . سرو موتورهای دقیق در کامپیوترها ابزارهای سرو و شماری ازکاربردها که به دقت بالایی نیاز است بکار می روند.
تنظیم کننده های ولتاژ
در اکثر آزمایشگاههای برق از منابع تغذیه برای تغذیه مدارهای مختلف الکترونیکی آنالوگ و دیجیتال استفاده می شود . تنظیم کننده های ولتاژ در این سیستم ها نقش مهمی را برعهده دارند زیرا مقدار ولتاژ مورد نیاز برای مدارها را بدون افت و خیز و تقریباً صاف فراهم می کنند .
منابع تغذیه DC ، ولتاژ AC را ابتدا یکسو و سپس آن را از صافی می گذرانند و از طرفی دامنه ولتاژ سینوسی برق شهر نیز کاملاً صاف نبوده و با افت و خیزهایی در حدود ۱۰ تا ۲۰ درصد باعث تغییر ولتاژ خروجی صافی
می شود.
از قطعات مورد استفاده برای رگولاتورهای ولتاژ می توان قطعاتی از قبیل ، ترانسفورماتور ، ترانزیستور ، دیود ، دیودهای زنر ، تریستور ، یا تریاک و یا آپ امپ (op Amp) و سلف (L) و خازن (C) و یا مقاومت (R) و یا ICهای خاص را نام برد .
عوامل موثر بر تنظیم ولتاژ :
عوامل مختلفی وجود دارند که در تنظیم ولتاژ در یک تنظیم کننده موثرند از جمله این عوامل را می توان ، تغییرات سطح ولتاژ برق ، ریپل خروجی صافیها، تغییرات دما و نیز تغییرات جریان بار را نام برد .
الف) تغییرات ولتاژ ورودی :
در تمامی وسایل الکترونیکی و یا سیستم های الکترونیکی و مکانیکی و غیره و در تمامی شاخه های علمی طراحان برای اینکه یک وسیله یا سیستم را با سیستم های مشابه مقایسه کنند معیاری را در نظر می گیرند که این معیار در همه جا ثابت است .
در یک تنظیم کننده معیاری به نام تنظیم خط وجود دارد که میزان موفقیت یک تنظیم کننده ولتاژ در کاهش تغییرات ولتاژ ورودی را با این معیار می سنجند و به صورت زیر تعریف می کنیم :
فرمول (۱ـ۲)
که در آن ، تغییرات ولتاژ ورودی ، تغییرات ولتاژ خروجی ، ولتاژ خروجی متوسط (DC) می باشد .
ب)تغییرات ناشی از تغییر دما :
یکی دیگر از عاملهای تعیین کننده در یک تنظیم کننده ولتاژ خوب تغییرات ناشی از دماست .
معیاری که تغییرات نسبی ولتاژ را برحسب دما بیان می کند ضریب دمای تنظیم کننده نام دارد که آن را با T.C نشان می دهیم و بصورت زیر تعریف می شود :
(فرمول ۲-۲)
T.C = Temperature coefficient
در رابطه فوق ، تغییرات ولتاژ خروجی در اثر تغییرات دمای و مقدار متوسط (DC) ولتاژ خروجی است .
معمولاً TC برحسب (Parts – per – million) بیان می شود و به صورت زیر تعریف می شود .
(فرمول ۳-۲)
در زیر چند نمونه از مقادیر ، ، و … برای بعضی از سری
IC های رگولاتور ولتاژ آورده شده است .
|
T.C |
Input voltage range |
Type |
|||
|
۰.۳% |
۰.۵% |
۰.۱% |
Max |
Min |
S.F.C 2100m |
|
۴۰ |
۸.۵ |
||||
|
۰.۳% |
۰.۱% |
۰.۱% |
۴۰ |
۸.۵ |
S.F.C 2200m |
|
۰.۳% |
۱ |
۰.۰۵۶% |
-۸ |
-۵۰ |
S.F.C 2204 |
Linear integrated circuits voltage regulators
ج)تغییرات ناشی از تغییر بار :
اکثر دانشجویان در آزمایشگاه با این مسئله روبرو شده اند که وقتی ما ولتاژی را از یک منبع می گیریم و با مالتی متر اندازه گیری می کنیم ( چه در حالت DC و چه در حالت ac ) وقتیکه به مدار وصل می کنیم مقدار آن با حالت بدون بار کمی اختلاف دارد ، دلیل آن تغییر بار است ، چون وقتی به مدار وصل نیست (بار) و وقتی به مدار وصل می شود بار تا مقدار خیلی زیادی کم می شود در حقیقت مقاومت بار تنظیم کننده ولتاژ ، مقاومت ورودی مداری است که از بیرون به آن متصل می شود و بنابراین می تواند تغییرات نسبتاً وسیعی داشته باشد .
در یک تنظیم کننده ولتاژ ایده آل مقاومت داخلی صفر است تا تغییر مقاومت بار تأثیری در ولتاژ خروجی آن نداشته باشد . در عمل تنظیم کننده ها دارای مقاومت داخلی کمی هستند و به همین دلیل کمی ولتاژ خروجی را تحت تأثیر قرار می دهند .
میزان این تأثیرپذیری را با معیاری به نام تنظیم بار یا ، نشان می دهیم که بصورت زیر تعریف می شود .
فرمول (۴-۲)
: ولتاژ در بار کامل (حداکثر بار ) .
: ولتاژ در بی باری .
* قسمتهای مختلف یک تنظیم کننده
الف)ترانسفورماتور:
جریان متناوب با دامنه و بسامد ثابت ، منبع اولیه انرژی الکتریکی است ( در بسیاری از کشورها و از جمله ایران و اروپا منبع سینوسی با ولتاژ موثر ۲۲۰ ولت و فرکانس ۵۰ هرتز به کار می رود و در ایالات متحده این منبع سینوسی با ولتاژ موثر ۱۱۰ تا ۲۲۰ ولت وفرکانس ۶۰ هرتز می باشد ) تقریباً همه مدارهای الکترونیکی برای تضمین کارکرد مناسب به ولتاژهای ثابت نیاز دارند.
برای مثال ، بیشتر ریزکامپیوترها به منبع های ۵ ولتی قادر به تأمین جریان A 100 نیاز دارند . دیگر سیستمهای سیگنال ـ پرداز اغلب به منبع های ۱۲ و ۱۵ ولتی نیاز دارند که در آنها جریان حاصل با شرایط بار تغییر می کند به علاوه بیشتر محرکهای موتور و سیستمهای کنترل به منبع های dcیی نیاز دارند که سطوح ولتاژ آنها را می توان برای برآوردن شرایط کار مطلوب تنظیم کرد .
وظیفه ترانسفورماتور ، تنظیم سطح ac به گونه ای است که دامنه dc مناسب بدست آید که ترانسفورمر می تواند از نوع افزاینده یا کاهنده باشد و ظرفیت توانی که می تواند جابجا کند باید برای تغذیه بار کافی باشد و اتلافهای یکسوساز ، پالایه و تنظیم کننده را تأمین کند . نسبت دورها ، از دامنه خروجی لازم نسبت به دامنه ورودی ac بدست می آید .
ب)یکسوسازها
بعد از ترانسفورماتور ، در یک منبع تغذیه ، یکسو کننده وجود دارد . وظیفه یکسوکننده تبدیل ولتاژ سینوسی به سیگنال dc پالسی است .
یکسوساز نیم موج :
با استفاده از یکسوکننده های نیم موج می توان نیم سیکلهای مثبت یا منفی یک ولتاژ متناوب را حذف نمود . ولتاژ ورودی VI معمولاً توسط یک ترانسفورماتور ورودی تأمین می شود . چنانچه از ولتاژ آستانه هدایت دیود صرفنظر کنیم در نیم سیکلهای مثبت ولتاژ ورودی ، دیود هدایت نموده و می توان آن را بصورت یک مقاومت کوچک درنظر گرفت بنابراین جریان (i) در این نیم سیکلها از تقسیم VIبر مجموع مقاومت های و بدست می آید .
اگر ولتاژ ورودی دارای شکل موج سینوسی با دامنه باشد دامنه جریان از تقسیم بر مجموع مقاومتهای و بدست می آید .
اگر در مدار یک آمپرمتر DC به صورت سری قرار گیرد این آمپرمتر مقدار متوسط جریان را نشان خواهد داد . با توجه به تعریف مقدار متوسط یک تابع متناوب داریم :
فرمول (۵-۲)
در انتگرال فوق به جای متغیر (t) از متغیر استفاده شده است .
ولتاژ DC دوسر مقاومت ، از ضرب مقاومت در جریان بدست
می آید ، که جریان نیز از تقسیم بر عدد همانطور که در رابطه (۱) بدست آمد ، بدست می آید . در مورد ولتاژ دوسر دیود دو حالت وجود دارد ، اولاً هنگامیکه دیود قطع است ، تمام ولتاژ ورودی در دوسر دیود ظاهر
می شود و ثانیاً ، اگر دیود هدایت کند ولتاژ لحظه ای دوسر دیود ، بوده بنابراین ولتاژ دوسر دیود عبارت است از :
فرمول (۶-۲)
مقادیر موثر جریان و ولتاژ نیز از روابط زیر بدست می آید:
فرمول (۷-۲)
فرمول (۸-۲)
* بازده یکسوکننده نیم موج :
نسبت توان DC تحویلی به مقاومت بار به توان متوسط ورودی را می توان به عنوان بازده یکسوکننده تعریف نمود که برابر است با :
فرمول (۹-۲)
یکسوساز تمام موج :
مدار یکسوساز تمام موج در حقیقت از ۲ مدار نیم موج تشکیل شده که هرکدام
در یکی از نیم سیکلهای ولتاژ سینوسی ورودی هدایت می کند ، در نیم سیکل مثبت ولتاژ ورودی ، فقط دیود هدایت نموده و جریان را از مقاومت بار عبور می دهد و در نیم سیکل منفی ولتاژ ورودی ، دیود هدایت نموده و جریان به مقاومت بار می رسد .
مقادیر متوسط جریان و ولتاژ :
اگر مدار یکسوساز تمام موج را با یکسوساز نیم موج مقایسه کنیم متوجه می شویم که جریان در مدار تمام موج ۲ برابر حالت نیم موج است .
و ولتاژ DC نیز از ضرب جریان بدست آمده بالا در مقاومت بدست می آید .
حداکثر ولتاژ معکوس :
در یکسوکننده نیم موج دیدیم که وقتی دیود D در حالت قطع قرار می گرفت تمامی ولتاژ ورودی بر روی آن ظاهر می شد و بنابراین حداکثر ولتاژ معکوس دیود برابر بود .
در یکسوکننده تمام موج وقتی دیود قطع است دیود در حالت هدایت بوده و تقریباً اتصال کوتاه است و ولتاژ دوسر دیود برابر می باشد و برای دیود نیز وقتی که دیود وصل است ، دیود قطع و اوج ولتاژ معکوس برابر میباشد . بنابراین باید بدانیم که در انتخاب دیودها برای مدار یکسوکننده تمام موج ، اندازه ولتاژ شکست دیود از بیشتر باشد تا دیود وارد ناحیه شکست نشود .
صافی خازنی :
در شکلهای مدارهای یکسوکننده که شکل موج ولتاژ خروجی در این مدارها با شکل موج ولتاژ ورودی تفاوتی اساسی پیدا نموده و در واقع این مدارهای یکسوکننده از یک ولتاژی که شامل هیچ گونه مؤلفه DC نیست یک ولتاژ DC توأم با ریپل (ripple) یا به عبارتی ناصاف بوجود می آورد . برای حذف ریپل موجود در خروجی یکسوکننده می توان از صافی خازنی استفاده کرد اینکار بوسیله موازی کردن یک خازن با مقاومت در مدار مثلاً یکسوکننده نیم موج بدست می آید . این صافی در حقیقت مانع رسیدن فرکانسهای بالای موجود در شکل موج ورودی ، به مقاومت بار گردیده و با این عمل به صاف تر شدن ولتاژ خروجی کمک می کند (صافی پایین گذر) .
مباحث کلی درباره فیلتر
یک مدار یکسوساز برای تبدیل سیگنالی با مقدار متوسط صفر به مقدار متوسط غیرصفر مورد نیاز است . البته ، ولتاژ dc ضربان دار بدست آمده ، کاملاً dc نیست و حتی نمونه قابل قبولی از آن نمی باشد . اگرچه در مداری نظیر یک شارژ باطری ، ضربان دار بودن مشکل بزرگی نیست ، با این وجود ، برای مدارات منبع تغذیه یک رادیو ، ضبط صوت ، کامپیوتر و دیگر دستگاههای الکترونیک ضربان با فرکانس ۵۰ سیکل روی ولتاژ dc خروجی ظاهر می شود و در اثر آن کار کلیه مدارت نادرست انجام می گیرد . در چنین موردی و موارد گوناگون دیگر dc بدست آمده بایستی صاف تر از ولتاژی باشد که مستقیماً از یکسوساز نیم موج یا تمام موج بدست می آید .
فیلتر رگولاسیون ولتاژ و ولتاژ موجک
قبل از ورود به جزئیات مدار فیلتر ، بایستی روش متداول ارزیابی مداری که اثر آن را به عنوان یک فیلتر مورد مقایسه قرار می دهیم بدقت ملاحظه شود . اگرچه باطری علی الاصول دارای ولتاژ خروجی dc یا پیوسته است ، ولتاژ بدست آمده از منبع ac با یکسوسازی و فیلتر کردن ، دارای مقداری ریپل یا موجک خواهد شد .هر اندازه تغییرات ac نسبت به سطح dc کمتر باشد ، عمل فیلتر بهتر صورت گرفته است .
فرض کنید ولتاژ مدار فیلتر را با یک ولتمتر dc و یک ولتمتر ac اندازه گیری کنیم . در آن صورت ولتمتر dc تنها مقدار متوسط یا سطح dc ولتاژ خروجی را نشان خواهد داد و ولتمتر ac فقط مولفه rms ولتاژ ac را اندازه گیری خواهد کرد (با فرض اینکه سیگنال از طریق یک خازن به ولتمتر اخیرالذکر منتقل شود) .
تعریف : موجک یا ریپل
مثال : برای اندازه گیری سیگنال خروجی یک مدار فیلتر ، با استفاده از یک ولتمتر dc و ac ، ولتاژ dc برابر ۲۵V و ولتاژ موجک (۱.۵ V) ولت (مؤثر) بدست آمده است . موجک خروجی فیلتر را حساب کنید .
اگر اندازه ولتاژ در بار کامل درست به اندازه ولتاژ در بی باری باشد ، رگولاسیون ولتاژ یا تنظیم بار محاسبه شده ۰% است که بهترین صورت ممکن می باشد . این به آن معنی است که منبع ولتاژ مستقل از جریان کشیده شده عمل می کند و دارای ولتاژ ثابتی است . ولتاژ خروجی اغلب منابع تغذیه با کشیده شدن جریان کاهش می یابد . کاهش کمتر ولتاژ به معنی کار بهتر مدار منبع تغذیه است .
ضریب موجک سیگنال یکسوشده
ولتاژ یکسوشده یک ولتاژ صاف نیست و بنابراین خروجی دارای مؤلفه dc و نیز موجک است . ملاحظه خواهید کرد که سیگنال یکسوساز تمام موج نسبت
به یکسوساز نیم موج دارای مؤلفه dc بیشتر و موجک (ریپل) کمتری است .
زمان ، زمانی است که در آن دیودهای یکسوساز تمام موج هدایت می کنند و خازن فیلتر را تا مقدار قله (نوک) ولتاژ ورودی ، شارژ می کند . زمانی است که در طول آن ولتاژ یکسو شده تا پایین تر از ولتاژ نوک افت می کند و خازن در بار تخلیه می گردد . چون سیکل شارژ ـ دشارژ در هر نیم سیکل یک یکسوکننده تمام موج اتفاق می افتد ، بنابراین زمان تناوب شکل موج یکسو شده ، یعنی نصف فرکانس سیگنال ورودی است .
که در آن ، جریان به میلی آمپر ، C ظرفیت به میکروفاراد ، و به کیلواهم است .
مثال : ولتاژ موجک یک یکسوساز تمام موج را بدست آورید که ظرفیت خازن فیلتر آن و جریانی که بار می کشد ، ۸۰ m A باشد .
که در آن ولتاژ نوک یکسوساز ، جریان بار بر حسب میلی آمپر ، و C ظرفیت خازن به میکروفاراد است .
پریود هدایت دیود و جریان قله دیود
از مباحث قبل روشن می شود که ظرفیت بالاتر خازن بدلیل فیلتر بهتر ، موجک کمتر و ولتاژهای متوسط زیادتری را سبب می شود . از این گفته ممکن است چنین نتیجه گیری شود که برای بهبود کار یک خازن فیلتر ، لازم است اندازه خازن را بزرگ انتخاب کنیم . البته خازن بر جریان نوک که از دیود یکسوساز می گذرد نیز اثر می گذارد و چنانکه خواهیم دید ، از ظرفیت بزرگتر خازن برای بالا بردن جریان نوک که از دیود یکسوکننده عبور می کند ، نیز استفاده می شود .
دیودها در این پریود ، متوسط جریان مورد نیاز شارژ خازن را بدست میدهند . هرچه این زمان کوتاهتر باشد ، مقدار جریان شارژ بیشتر می شود . توجه کنید که مقادیر کوچکتر خازن ، با بزرگتر ، جریان نوک دیود کمتر از جریان نوک دیود در خازن با ظرفیت بیشتر است .
از آنجا که جریان متوسط دریافتی از منبع تغذیه بایستی معادل متوسط جریانی باشد که از دیود در پریود شارژ می گذرد .
موجک دوسر یک خازن فیلتر را با استفاده از یک فیلتر RC می توان کاهش داد . علت استفاده از شبکه اضافی RC ، عبور هرچه بیشتر مؤلفه dc ولتاژی است که در دوسر خازن فیلتر بدست آمده است و ضعیف کردن مؤلفه ac موجکی است که ممکن است در دوسر خازن فیلتر وجود داشته باشد . مدار یکسوکننده تمام موج ، به همراه خازن فیلتر و مدار فیلتر RC را نشان می دهد . کار مدار فیلتر با استفاده از قانون بر هم نهش (superposition) قابل محاسبه است .
تنظیم کننده های ولتاژ ساده :
تنظیم کننده های ولتاژ ساده تنظیم کننده هایی هستند که از یک دیود زنر برای ثابت نگه داشتن ولتاژ استفاده می شود یعنی عنصر تنظیم کننده ولتاژ همان دیود زنر است . در طراحی مدار یک تنظیم کننده ساده برحسب وضعیت ولتاژ و جریان مورد نظر تنظیم کننده را بصورت موازی و یا سری با مقاومت بار (خروجی) قرار می دهند . حالت اول را تنظیم کننده موازی و حالت دوم را تنظیم کننده سری می نامند . در مدار سری جریان خروجی تنظیم کننده از مقاومت بار می گذرد در حالی که در وضعیت موازی تنظیم کننده موازی با بار قرار دارد و فقط بخشی از جریان ورودی از آن عبور می کند . معمولاً از تنظیم کننده موازی در مواردی که با ولتاژهای متوسط و یا کم و نیز جریان های زیاد و بار نسبتاً ثابت سروکار داریم استفاده می شود زیرا در این صورت نیاز به دیود زنر با ولتاژ و جریان خیلی زیاد نخواهیم داشت . در مواردی که ولتاژ مورد نظر زیاد است و جریان بار کم و یا متوسط بوده و یا به علت تغییر مقاومت بار متغیر است تنظیم کننده سری مناسب تر است .
الف ) تنظیم کننده موازی
ب ) تنظیم کننده سری
ج ) یک تنظیم کننده ساده با دیود زنر
قسمت سمت چپ مقاومت Rl را با مدار معادل تونن جایگزین می نماییم . توجه کنیم که با دیود زنر بصورت یک منبع ولتاژ که با مقاومت rz سری است برخورد می نماییم .
محدودیت تنظیم کننده ساده :
در یک تنظیم کننده ولتاژ است اگر چه تغییرات ولتاژ ورودی ناچیز است ولی جریان بار ثابت نمی باشد . تغییرات جریان بار باید همگی توسط دیود زنر تحمل شود لذا در مواردی که تغییرات جریان بار زیاد باشد استفاده از یک دیود زنری با بزرگ و در نتیجه Pz ,max بزرگ ضرورت دارد و استفاده از یک دیود زنر با Iz , max بزرگ موجب می شود که هنگام بی باری تمامی جریان از دیود زنر عبور کرده و تلفات حرارتی آن زیاد شود . این امر باعث کاهش عمر دیود زنر و همچنین کاهش بازده تنظیم کننده می شود برای رفع این اشکال می توان با اضافه نمودن یک طبقه امیتو فالوئر در خروجی مدار تغییرات جریان را تقویت نمود همان طور که می بینیم در این حالت ولتاژ خروجی به اندازه VBE( oN) تراتوسیتور از کمترخواهد بود .
تنظیم کننده های ولتاژ پیشرفته :
اگر چه استفاده از تنظیم کننده های ولتاژ ساده در بسیاری از سیستمهای الکترونیکی ارزان قیمت متداول است ، ولی در منابع تغذیه تجارتی که تنظیم ولتاژ بهتر و دقیقتر و نیز ولتاژ خروجی قابل تغییر مورد نیاز است ، از تنظیم کننده های پیشرفته تری استفاده شود . در این مدار از فیدبک منفی ولتاژ – سری استفاده شده است . تقویت کننده دارای بهره ولتاژ و امپرانس ورودی بزرگ می باشد .
در صورتیکه دقیق و پایدار بوده و مقاومتهای دقیق و با تغییرات حرارتی کم باشند ، ولتاژ خروجی از پایداری و ثبات مطلوبی برخوردار خواهد بود ، با تغییر مناویب B می توان به ولتاژ خروجی مورد نظر دست یافت .
مدار نمونه بردار :
این مدار می تواند به سادگی از یک تقسیم کننده ولتاژ تشکیل شده باشد که در دو سر آن ولتاژ خروجی را ببیند و سر وسط جریانی نکشد . ولتاژ نمونه برداری شده از سر وسط به یک مدار با امپرانس ورودی بزرگ داده می شود تا جریان این سو قابل صرف نظر باشد .
مدار مقایسه کننده :
مدار مقایسه کننده می تواند یک تقویت کننده تفاضلی و یا یک تقویت کننده عملیاتی باشد . انتخاب دوم به دلیل امپرانس ورودی زیاد آن از نظر عملکرد بهتر مدار نمونه بردار و ولتاژ مرجع برتری دارد .
تقویت کننده DC :
اگر در بخش مقایسه کننده از یک تقویت کننده عملیاتی استفاده شود ، سیگنال تفاضل به اندازه کافی تقویت می شود و تقویت کیتره اضافی ضرورت ندارد چنانچه مقایسه کننده یک تقویت کننده تفاضلی باشد ، استفاده از یک مدار مناسب ( معمولاْ یک تراترسیتور در حالت امیتر مشترک ) در بسیاری از موارد الزامی است .
مدار کنترل :
مدارکنترل بوسیله ولتاژ خروجی تقویت کننده ، جریان خروجی را کنترل میکند . که این بخش در مدارهای تنظیم ولتاژ از یک تراترسیتور و یا یک زوج دار لینگتون تشکیل می شود . عنصر خروجی می تواند بصورت موازی یا سری با خروجی قرار گیرد . در حالت اول تنظیم کننده را تنظیم کننده ولتاژ موازی می نماند از این نوع تنظیم کننده معمولاْ در جریانهای زیاد و ولتاژهای خروجی کم و متوسط استفاده می شود . در ولتاژهای خروجی زیاد و جریانهای کم و متوسط تنظیم کننده های سری را به کار می برند در این تنظیم کننده ها عنصر کنترل به صورت سری با خروجی قرار می گیرد .
مدار ولتاژ مرجع :
ساده ترین مدار ولتاژ مرجع از یک دیود زنر تشکیل می شود این عنصر با تغییر جریان خود ولتاژ دو سرش را تقریباْ ثابت نگه می دارد . ولتاژ شکست دیود زنر ، علاوه بر تغییر با جریان تابع دما نیز می باشد تغییرات ضریب دمای ( T C ) بر حسب ولتاژ شکست و جریان دیود زنر نشان داده شده است . بر اساس بررسیهای انجام شده ، پایدارترین دیود زنرها دارای ولتاژ شکست حدود ۶ ولت می باشند در صورتی که دستیابی به یک ولتاژ مرجع پایدار مورد نظر بوده و ولتاژ آن چندان مهم نباشد ، بهتر است از یک دیود زنر ۶/۵ ولت سری شده با یک دیود سیلیکن معمولی در بایاس مستقیم استفاده شود . در این ولتاژ ضریب دمای ثبت دیود زنر ضریب دمای دیود معمولی را خنثی می کند . با تغییر جریان دیود زنر می توان تا اندازه ای ضریب دمای دیود را تنظیم نمود بعضی دیود زنرها بطور داخلی با یک دیود معمولی سری نشده و در واقع تغییرات حرارتی آنها جبران شده است . از زمره این دیود زنرهای سری۲۱ Nn 1 را می توان نام بردکه با ولتاژ شکست ۲/۶ ولت دارای ضریب دمایی بین ppm /c 5 دیود (۲۱ Nn 1 ) تا ppm /c 100 ( 29 Nn 1 ) می باشند . دیودهای ۹۴۰ N 1 و ۹۴۶ N 1 با ولتاژهای ۹ و ۷ /۱۱ ولت دارای ضریب دمای ppm /c 2 می باشند که به راحتی با سری شدن با یک دیود معمولی قابل جبران هستند . دیود زنرهای موجود در بازار عموماْ ولتاژهای شکستی بین ۵/۲ تا ۲۰۰ ولت دارند با توان نامی چند دهم تا ۵۰ وات در مواردی که به ولتاژهای مرجع کوچکتر نیاز است از سری کردن دیودهای معمولی و یا از دیودهایLED با رنگهای مختلف استفاده می شود . برای بهبود عملکرد مدار ولتاژ مرجع می توان از ۲ دیود زنر استفاده نمود . در این مدار از میزان اثر تغییرات ورودی در جریان دیود زنر دوم تا حد زیادی کاسته شده است . یک راه اساس تر این است که دیود زنر توسط یک منبع جریان ثابت تغذیه شود . دیود زنر ولتاژ بیش ۱Q ثابت نگه داشته و در نتیجه باعث ماندن جریان عبوری از دیود زنر مرجع یعنی ۲D می شود . برای بهبود بیشتر عملکرد این مدار سعی می شود که از طریق یک تراترسیتور دیگر ( ۲Q) جریان ۱D نیز ثابت نگه داشته شود . جریان مقاومت ۲R توسط ۲D تثبیت شده و این جریان که تقریباْ همان جریان دیود ۱D است باعث تثبیت ولتاژ آن می شود . این کار به نوبه خود جریان تراترسیتور ۱Q و در نتیجه جریان دیود مرجع ۲Q را ثابت نگه می دارد و از این طریق یک ولتاژ مرجع قابل اطمینان حاصل میشود . در طراحی مدارهای ولتاژ مرجع می توان از تقویت کننده عملیاتی نیز کمک گرفت . در شروع کار مدار ، دیود زنر قطع و فیدبک مثبت غالب است و باعث افزایش ولتاژ دو سر دیود می شود . پس از اینکه این ولتاژ به مقدار رسید ، فیدبک منفی کنترل مدار را در دست می گیرد . در این مدار می توان از یک دیود زنر با ولتاژ شکست پایدار مثلاْ با استفاده نمود و با انتخاب مقادیر مناسب برای مقاومتهای ۱R و ۲R به ولتاژ مرجع مورد نظر دست یافت . مقاومتهای به کار رفته و زین مدار باید حتی الامکان از میان مقاومتهای دقیق انتخاب شوند در این مدار جریان دیود زنر از طریق مقاومت ۳ R تأمین میشود و دارای مقدار ثابتی می باشد زیرا ولتاژهای دو سر این مقاومت یعنی و ثابت می باشند . می توان دیود زنر را درحلقه فیدبک منفی نفر قرار داد مثلاْ در این مدار نیز جریان دیود زنر که همان جریان مقاومت R است همواره ثابت باقی می ماند زیرا ولتاژ دو سر ورودی تقویت کننده عملیاتی با یکدیگر مساوی ویوایو می باشد . بنابراین انتخاب مقاومتهای دقیق و یک دیود زنر با ولتاژ شکست پایدار و ضریب دمای جبران شده تأمین یک ولتاژ مرجع باید در و مطلوب را تضمین می کند .
- لینک دانلود فایل بلافاصله بعد از پرداخت وجه به نمایش در خواهد آمد.
- همچنین لینک دانلود به ایمیل شما ارسال خواهد شد به همین دلیل ایمیل خود را به دقت وارد نمایید.
- ممکن است ایمیل ارسالی به پوشه اسپم یا Bulk ایمیل شما ارسال شده باشد.
- در صورتی که به هر دلیلی موفق به دانلود فایل مورد نظر نشدید با ما تماس بگیرید.
یزد دانلود |
دانلود فایل علمی 