فایل ورد کامل مقاله تفکیک تئوری الاستیسیته برای بسته‌های ذرات سخت متراکم با رویکرد غیرخطی مخروطی؛ تحلیل علمی و مهندسی


در حال بارگذاری
10 جولای 2025
فایل ورد و پاورپوینت
20870
2 بازدید
۹۹,۰۰۰ تومان
خرید

توجه : به همراه فایل word این محصول فایل پاورپوینت (PowerPoint) و اسلاید های آن به صورت هدیه ارائه خواهد شد

 فایل ورد کامل مقاله تفکیک تئوری الاستیسیته برای بسته‌های ذرات سخت متراکم با رویکرد غیرخطی مخروطی؛ تحلیل علمی و مهندسی دارای ۱۱ صفحه می باشد و دارای تنظیمات در microsoft word می باشد و آماده پرینت یا چاپ است

فایل ورد فایل ورد کامل مقاله تفکیک تئوری الاستیسیته برای بسته‌های ذرات سخت متراکم با رویکرد غیرخطی مخروطی؛ تحلیل علمی و مهندسی  کاملا فرمت بندی و تنظیم شده در استاندارد دانشگاه  و مراکز دولتی می باشد.

توجه : در صورت  مشاهده  بهم ریختگی احتمالی در متون زیر ،دلیل ان کپی کردن این مطالب از داخل فایل ورد می باشد و در فایل اصلی فایل ورد کامل مقاله تفکیک تئوری الاستیسیته برای بسته‌های ذرات سخت متراکم با رویکرد غیرخطی مخروطی؛ تحلیل علمی و مهندسی،به هیچ وجه بهم ریختگی وجود ندارد


بخشی از متن فایل ورد کامل مقاله تفکیک تئوری الاستیسیته برای بسته‌های ذرات سخت متراکم با رویکرد غیرخطی مخروطی؛ تحلیل علمی و مهندسی :

تفکیک تئوری الاستیسیته برای بسته‌های ذره سخت متراکم شده تئوری تشکیل دهنده غیر خطی «مخروط»

چکیده:
بسته‌های ذره سخت باعث ایجاد منبع غنی از مسائل برجسته تئوری می‌باشند که به عنوان نقطه شروع مفید برای مدل ساختار رسانه دانه‌ای، مایعات، سلول‌های زنده، شیشه‌ها و رسانه تصادفی می‌باشند. اصل بسته‌های ذره سخت متراکم شده نسبت به تغییر شکل کلی را نمی‌توان به صورت الاستیته غیر خطی نشان دارد اما این شامل تئوری تشکیل دهنده غیر خطی «مخروط» می‌باشد. این اصل جداگانه برای جابه‌جایی ذراتی شده که به توالی فضایی اصلی و داخلی ذرات بستگی دارد و مسیر کشش ممکن را نشان داده‌اند که مرتبط به عدم ساختار ذره همراه با

پتانسیل نرم می‌باشد. از لحاظ ریاضی، مجموعه کشش‌های ممکن دارای ساختار مخروطی می‌باشد یعنی ترکیبات تاسنور کشش اعمال شده معمولاً از عدم تساوی خطی پیروی می‌کند. اصل عملکرد غیر خطی بواسطه آنالیز چندین بسته ویژه بدست آمده است. سرانجام ما این شرایط را تحت بسته‌ای مورد بررسی قرار داده‌ایم به صورت تراکم ناپذیر در حس قدیمی نشان داده شده است.

مقدمه:
برنل ۱۹۶۵ مسائل مرتبط به ذرت بسته بندی شده در محفظه یا مجرای یکی از مسائل قدیمی و شناخته شده برای انسان را به صورت برجسته نشان داد. بسته‌های ذرات سخت به عنوان منبع بسیاری از چالش‌های مرتبط به مسائل تئوری می‌باشد که به عنوان نقطه شروع مفید به کاربرده

می‌شوند و باعث بررسی ساختار معکوس بسیاری از ساختارها همانند رسانه‌دانه‌ای، مایعات، سلول زنده، پشت رسانه تصادفی شده است. استفاده از بسته‌ها با ذره سخت به عنوان مدلی برای ایجاد ساختار متراکم شده‌اند که از این اصل استنتاج شده‌اند که نیروهای دافع، در ابتدا مسئول تعیین ساختار شان هستند.
اکثر سوالات دشوار شامل رده بندی و شمارش بسته‌های کروی و صفحه‌ای «تصادفی» می‌باشد. درواقع، اخیراً نشان داده شده که علامت ارجمنهد «بسته بندی بسته تصادفی» RCP در اصل از لحاظ ریاضی بر تعریف شده است و ما بر این باور هستیم که باید با علامت جدید جایگزین شود که

به عنوان وضعیت MRJ نامیده شده است که به صورت دقیق انجام می‌شود.
تعیین وضعیت MRJ بر روی پیشرفت اندازه‌های است که مرتبط به توالی مسائل چالش برانگیز در تئوری ماده چگال می‌باشد و تعریف دقیق اصلاح «متراکم کردن» است.
ترسیم متراکم از ذرات سخت به عنوان توجه اصلی و بنیادین می‌باشد. سه تا گروه بندی متمایز از بسته بندی‌های قابل تشخیص می‌باشند و این به عملکرد آنها با توجه به عدم تداخل توالی هندسی و جابه‌جایی اعمال شده مجازی می‌باشد. تراکم داخلی، تراکم جمعی و تراکمش شد. اینها گروه بندی‌هایی هستند که به طور دقیق در بخش ۲ تعریف شده‌اند. بسته بندی تقریبی، این طبقه بندی‌های متراکم شده به صورت فهرست درآمده‌اند و این باعث افزایش شدت شده است و نسبت سختی بسته بندی را نشان می‌دهد.
هدف از این مقاله نشان دادن واکنش بسته‌های ذره سخت متراکم شده نسبت به تغییر شکل است که معمولاً توسط الاستیته خطی نشان داده نشده اما شامل فرمالیته متناوبی می‌باشد که به طور مناسب تعریف شده است.
اگرچه ما صفحه‌های سخت گرد را در دوتا بعد به صورت تخصصی درآوردیم و کره‌های سخت را به صورت سه بعدی ترسیم کردیم، نتیجه گیری کلی این مقاله به کارگیری ذرات سخت از شکل دلخواه است. ذرات سخت در تعامل با یکدیگر می‌باشد فقط هنگامی که به یکدیگر برخورد می‌کنند و سپس این انعکاس نامحدو دفعی، غیر قابل نفوذ از حجم فیزیکی می‌باشد. بنابراین پتانسیل جفت(r) برای صفحات سخت یا اشکال کروی با قطر D به صورت زیر مشخص شده است:
(r) = {(+ rD.@0, r>D,)
در اینجا r فاصله جداسازی درون ذره‌ای می‌باشد. این اصل تکی از این پتانسیل است که منجر به ایجاد نقض کلی از الاستیته خطی در مشخصات عملکرد فشار کشش شده که مرتبط به

بسته‌های ذره سخت متراکم شده می‌باشد. تئوری تشکیل دهنده غیر خطی مرتبط به این اصل است که جابه‌جایی غیر تداخلی مجاز کروی مرتبط به ساختار هندسی داخلی می‌باشد. بدوز این وابستگی بر روی ساختار هندسی داخلی مرتبط به اصل بسته‌های ذرات سخت متراکم شده می‌باشد که باعث افزایش این ساختار شده اما باعث فشردگی‌های مقاومت پذیر نیز شده است

. این نتایج مسیر دهی در قانون تشکیل دهنده غیر خطی مرتبط به جابه‌جایی ذرات کوچک می‌باشد. برعکس، ساختار ذرات با پتانسیل نرم، حتی اگر غیر خطی باشد، حاصل قانون کشش فشار برای جابه‌جایی‌های کوچک می‌باشد.
علاوه بر این بدون پتانسیل خطی در مورد غیر خطی می‌توان مدولی را نشان داد که به وضعیت و تاریخچه سیستم بستگی دارد.

این در مورد بسته‌های ذره سخت متراکم شده، حقیقت ندارد. از لحاظ ریاضی مجموعه کشش‌های ممکن به عنوان مخروط چند وجهی می‌باشند.
ما بر روی وضعیت فیزیکی ذره سخت تأکید کرده‌ایم که این شامل طیف گسترده‌ای از شرایط و پاسخ‌ها می‌باشد. فقط مجموعه فرعی آن در مقاله فعلی ارائه شده است، ما به طور انحصاری بر روی تعاملات (برهم کنش‌های) کره سخت متمرکز شده‌ایم که باعث ایجاد مدل ایده آلی شده‌اند. مدلی که در بسیاری از اسناد ایجاد شده است این برعکس مطالعات و پژوهش‌های انجام شده بر روی مواد دانه‌ای است که ذرات غیر کروی و تغییر شکل یافته، اصطکاک، دینامیک و دیگر اثرات را نشان می‌دهد. برای بحث و تبادل نظری که در اینجا انجام شده، خواننده باید مقاله اخیر را توسط راکس ۲۰۰۰ را مورد بحث و تبادل نظر قرار دهد.
در بخش بعدی ما تعاریف اصلی را معرفی کرده‌ایم. در بخش ۳ ما شماری از نمونه‌هایی را نشان دادیم که چگونه الاستیته خطی باعث تفکیک بسته‌های ذره سخت متراکم شده‌اند و این باعث

دستیابی به رابطه تشکیل دهنده غیر خطی مخروطی شده است ما همچنین این شرایط را تحت بسته بندی مورد بررسی قرار دادیم و این در معنای قدیمی به عنوان تراکم ناپذیر نامیده شده است. در بخش ۴، ما تئوری تشکیل دهنده غیر خطی مخروط را برای بسته‌های عادی به کار بردیم که شامل موارد اصلی از بسته‌های غیر کریستالی شده است و این بسته‌ها شامل ذرات متمایز می‌باشد.

۲- تعاریف گروه بندی متراکم:
بسته بندی کروی، مجموعه‌ای از کره‌ها در فضای d بعدی Euclidean می‌باشد بسته بندی کروی p(rN) از کره N با بردارهای وضعیت مراکز کروی rN=r1,r2…rN مشخص شده‌اند.
تراکم داخلی: هر ذره در این ساختار توسط بخش‌های مجاور به دام افتاده می‌شود یعنی نمی‌توان آن را برگرداند در حالیکه وضعیت ثابت آن مرتبط به کل ذرات دیگر می‌باشد.
تراکم جمعی: هر ترسیم تراکم داخلی که در هیچ کدام از مجموعه فرعی ذرات نمی‌باشد به طور پیوسته جابه‌جا می‌شود بنابراین بخش آنها حرکت می‌کنند و در تماس با یکدیگر و مجموعه یادآوری می‌باشند.
تراکم شدید: هرگونه ترسیم از تراکم جمعی باعث ایجاد تغییر شکل حجم یکنواخت از مرز ساختار شده است.
واضح و مشخص است که گروه بندی متراکم در اینجا به صورت فهرست درآمده‌آند و این باعث

افزایش توالی شدت شده است. در مورد تراکم جدی همراه با شرایط مرزی دیواره (جداره) سخت ما باید تغییر شکل محفظه جداره (سخت) را نشان دهیم، اگرچه در مورد تراکم هر کرده دارای حداقل تماس d+1 همراه با کره‌های مجاور می‌باشد و همه آنها به صورت نیمکره بعدی نمی‌باشند.
برای شروع آن مفیداست که بسته‌های مرتب شده ساده از صفحات یا کره‌ها را گروه بندی کنی

م که در بالای طبقه‌بندی متراکم قرار گرفته شده‌اند. می‌توان بسته‌ایی ایجاد کرد که صفحات و کره‌ها را در محل شبکه ساده همراه با محفظه جداره سخت مناسب قرار دهیم. این برای شبکه دو بعدی و سه بعدی همراه با محفظه مستطیلی شکل مناسب می‌باشد که در شکل ۲ و جدول ۱ شبکه‌های دو بعدی و سه بعدی نشان داده شده است. جدول ۲ دارای شرایط مرزی دوره‌ای یکسانی می‌باشد. شکل ۳ نشان می‌دهد که چرا شبکه شش ضلعی به طور کلی همراه با شرایط مرزی جداره سخت متراکم نشده است. همچنین تراکم اصلی مرتبط به حجم غیر افزایشی تغییر شکل یافته می‌باشد. توجه کنید که این تعاریف مرتبط به تراکم سازی از هرگونه سر و صدا در سیستم جلوگیری می‌کند. با این حال، پروتکول‌های تجربی (عملی)و محاسباتی باعث ایجاد بسته‌های عادی شده‌اند که شامل تراکم جزئی از ذرات صدا دار می‌باشد. با این حال، اکثر اشکال کروی تحت شبکه متراکم به صورت فشرده درآمده‌اند و این سختی پذیری بسته بندی ذره را استنباط کرده است. در هر مورد این ذرات سر و صدا دارا را می‌توان بدون ایجاد اختلال در یادآوری متراکم شده جمعی و به شدت در دو یا سه بعد معمولاً ناشناخته می‌باشند و این باعث دستیابی به بسته‌های متراکم شده همراه با جزئیات دلخواه و ریاضی شده است این رده بندی‌های متراکم سازی همانند روابط آنها نسبت به دیگر تعاریف به کاربرده شده در اسناد ریاضی می‌باشد.
تفکیک الاستیتیه خطی:
این نکته مهم مورد تأیید قرار گرفته شده و همانطور که قبلاً ذکر شده، تعرایف متراکم سازی به صورت حرکت محمن می‌باشند یعنی آنها به بارهای نیرو یا فشارهای اعمال شده بر روی سیستم مرتبط نمی‌باشد. با این حال، می‌توان موردی را انتخاب کرد که مرتبط به فشارهای همزمان مسنب به به تغییر شکل از طریق روابط مناسب تشکیل دهنده می‌باشد.
این واضح و مشخص است که ساخترا شبه‌ای شامل شبکه مثلثی شکل دو بعدی و سه بعدی

می‌باشد. این باعث ایجاد سوالاتی شده که مرتبط به وضعیت تراکم سازی دقیق شده به سادگی مرتبط به مقاومت شبکه کروی در دو بعد شده و شبکه ملقب ساده به صورت سه بعدی همراه با جداره سخت می‌باشد. برای تمام شبکه مربع، تنها کشش متقارن ارزان قیمت مرتبط به برش خالص بدست آمده در طول ردیف و ستون ذرات می باشد. تمام کشش‌های برشی همراه با دیگر گرایش‌ها به صورت پایدار باقی مانده‌اند.
برای بسته‌های کلی ذرات سخت متراکم شده، با توجه به کشش اعمال شده فشارهای القاء شده حتی به صورت صفر یا نامحدود، به عبارت برخی از این کشش‌ها به صورت مجاز می‌باشد. این نکته اهمیت دارد که بر روی وضعیت غیر خطی حاصل رابطه تشکیل دهنده متمرکز شویم که کاملاً نسبت به موارد غیر خطی عادی، متمایز می‌باشد. سیستم ذرات سخت متراکم شده

«مدول» به گرایش کشش بستگی دارد. در اصل مجموعه کشش‌های ممکن به صورت مخروط چند وجهی در فضا یا ترکیبات (سازه) کششی می‌باشد.
اکنون ما روشی را نشان می‌دهیم که مرتبط به اصل مخروطی کشش‌های ممکن در سیستم متراکم شده ذره سخت می‌باشد. نمونه مناسب از شبکه دو بعدی تحت شرایط مرزی دوره‌ای که غیر آزمایشی می‌باشند و همراه با مجموعه متقارن در شبکه لوزی می‌باشد و d بعد فضایی است. توجه کنید که A ماتریس شامل اجزاءd2 می‌باشد. بخشی از شبکه لوزی است. این بسته بندی دوره‌ای ویژه است. بسته بندی دوره‌ای حاصل تکثیر بسته بندی ایجاد شده محدود p(rN) بر روی شبکه می‌باشد و A={_1,…,_d} است در اینجا _۱ حاصل بردارهای شبکه مستقل می‌باشد و d بعد فضایی است. توجه کنید که A ، {_۱,…,_d} می‌باشد در اینجا _۱ مستقل خطی بردارهای شبکه می‌باشد. زاویه باعث بازیابی شبکه‌های مربع و مثلثی شکل شده‌اند.

بسته‌های ایجاد شده مرتبط به ذره تکی می‌باشد که در این مورد:
= [(۱&cos()@0&sin() )]

با تمرکز بر روی تغییر شکل بر شل حفظ حجم لحظه‌ای: یعنی کشش‌های متقارن بی اثر صورت
= [(x&y@y&-x)]
نقاط شبکه از شبه کلی بواسطه بردار وضعیت صورت r=A توضیح داده شده است در حالیکه سازه‌ها بردار با طول n به صورت صحیح درآمده‌اند. بنابراین این باعث تحریف جزئی از شبکه A

شده است، سپس تغییر در وضعیت بردار به صورت r= می‌باشد و این مرتبط به کشش =.^(-۱) می‌باشد. ادغام این نتایج همراه با ماتریس (۲) و کشش اعمال شده (۳) معادله زیر بدست آمده است.
= [(x&xcos()+ysin()@y&ycos()+xsin())]
بنابراین تغییر در دوتا بردار شبکه به صورت _۱=(x,y) و _۱=( cos()+ysin ()) شده است. این توالی برای ثابت کروی همراه با جهت‌های از تشکیل جانبی لوزی شکل در زاویه شده که به صورت _۱_۱۰ و _۲_۲۰ نشان داده شده است. این روابط باعث ایجاد شرایط نامساوی شده‌اند:
x0, y(1-2 cos^2())/sin(2) x
این تحلیل نشان می‌دهد که اصل مخروطی کشش‌های ممکن برای سلول واحد || می‌باشد. شکل ۷ مخروط سازه‌های مرتبط به کشش ممکن (احتمالی)را نشان می‌دهد. ما این نتایج را مورد تأیید قرار داده‌ایم که برای سلول‌های واحد بزرگ دلخواه مناسب می‌باشد. توجه کنید که شبکه لوزی معمولاً میان گروه بندی فشرده جمعی و داخلی قرار گرفته شده است.

اکنون می‌توانیم بارهای فشار، برابری، تغییر شکل کاهش حجم را به صورت زیر نشان دهیم.
= [(x&y@y&-(x+))]
در اینجا ثابت غیر منفی است، توجه کنید که این کشش به صورت اثر غیر مثبت می‌باشد و آن معادل – است. به این نکته توجه کنید که تعریف مدول‌های حجم شامل واحد کشش فشرده می‌باشد.
= [(-۱&0@0&-1)]
در صورتیکه کشش فشرده هر واحد به صورت مجاز نباشد، همرفت عادی باعث شده که این

سیستم تراکم ناپذیر باشد، یعنی مدول‌های حجم به صورت محدود می‌باشند. در صورتیکه کشش فشرده واحد مجاز باشد،‌سپس آن به ساختار مراکم برمی‌گردد. اگرچه برای بسته بندی مثلثی شکل آن باعث ایجاد ترکیبات (سازه‌های) کششی خارج از قطر شده است. و آن به دنبال تغییر مشابه است. اگر ما خودمان را به تعریف محمولی تراکم ناپذیری محدود کنیم، به عبارتی مدول‌های حجم به صورت نامحدود می‌باشند، سپس ما می‌توانیم ساختارهای متراکم کلی را به صورت تراکم ناپذیر در نظر بگیریم. این نتایج همراه با نتیجه تئوری مرتبط به Connelly (1988) می‌باشد. بررسی وضعیت تئوری او که مرتبط به بسته بندی با حداکثر تراکم داخلی می‌باشد که در آن ذرات نمی‌توانند به صورت یکنواخت بزرگ شوند و این باعث افزایش تراکم سستم شده است. این نشان می‌دهد که این محفظه تحت کاهش با حفظ شکل به صورت یکنواخت شده است. بنابراین همراه با بسته بندی متراکم می‌باشد که به صورت نامتراکم می‌باشد.
واضح و مشخص است، تراکم ناپذیری لازم نیست بر روی ترسیم متراکم داخلی به کاربرده شود. برای مثال، بسته بندی همراه با زنجیره خطی کره‌ها که دقیقاً دارای فاصله‌ای می‌باشند که شامل بسته‌های داخلی متراکم می‌باشد و به صورت نامتراکم می‌باشند، این حقیقت ندارد که ترسیم‌های متراکم داخلی به صورت نامتراکم می‌باشند. در واقع، هرگونه تراکم داخلی لازم نمی‌باشد و این باعث ایجاد خود فشار مناسب شده است.
با این حال، تمام بسته‌های متراکم غیر داخلی دارای خود فشار می‌باشند و بنابراین غیر متراکم نمی‌باشد. برای مثال،‌شکل ۹ نمونه‌ای از بسته متراکم داخلی را نشان می‌دهد که خود فشار آن محو شده است و از اینرو تراکم پذیر می‌باشد.
۴- تئوری غیر خطی مخروطی برای بسته‌های عادی:
در این مقاله ما طبیعت مخروطی را برای مجموعه کشش‌های ممکن مرتبط به بسته های کروی سخت با استفاده از نمونه ساده نشان داده‌ایم این همانند بسته‌های دوره‌ای مثلثی شکل همراه با مبدل اولیه شبکه می‌باشد. اگرچه نوع یکسانی از این استدلال‌ها برای بسته‌های عادی‌تر به

کاربرده می‌شود. در اصل این مشتق،‌شامل مراحل زیر می‌باشد. اول، یک نفر توالی نفوذ پذیری میان جفت‌های ذرات تماس را بر حسب جاجه جایی ذره Dn به عنوان ساختار عدم تساوی خطی می‌نویسد: سپس کشش ماکروسکوپی آن به عنوان تغییر خطی جابه‌جاییمیکروسکوپی می‌باشد و این باعث کاهش توالی نفوذ پذیری شده که فقط مرتبط به تاسنور کششی میکروسکوپی می‌باشد و این باعث کاهش توالی شده است.

ما معمولاً بر روی روش‌های تحلیلی و عددی متمرکز شده‌ایم و این باعث تعیین مشخصات عملکرد فشار کشش برای کاهش بسته‌های دوره‌ای شده کاملاً به صوتر کره کاملاً‌سخت می‌باشند.

  راهنمای خرید:
  • لینک دانلود فایل بلافاصله بعد از پرداخت وجه به نمایش در خواهد آمد.
  • همچنین لینک دانلود به ایمیل شما ارسال خواهد شد به همین دلیل ایمیل خود را به دقت وارد نمایید.
  • ممکن است ایمیل ارسالی به پوشه اسپم یا Bulk ایمیل شما ارسال شده باشد.
  • در صورتی که به هر دلیلی موفق به دانلود فایل مورد نظر نشدید با ما تماس بگیرید.