فایل ورد کامل مقاله نکات جذاب در ریاضیات؛ تحلیل علمی پدیدههای شگفتانگیز و کاربردهای نوین در علوم مختلف
توجه : به همراه فایل word این محصول فایل پاورپوینت (PowerPoint) و اسلاید های آن به صورت هدیه ارائه خواهد شد
فایل ورد کامل مقاله نکات جذاب در ریاضیات؛ تحلیل علمی پدیدههای شگفتانگیز و کاربردهای نوین در علوم مختلف دارای ۲۶ صفحه می باشد و دارای تنظیمات در microsoft word می باشد و آماده پرینت یا چاپ است
فایل ورد فایل ورد کامل مقاله نکات جذاب در ریاضیات؛ تحلیل علمی پدیدههای شگفتانگیز و کاربردهای نوین در علوم مختلف کاملا فرمت بندی و تنظیم شده در استاندارد دانشگاه و مراکز دولتی می باشد.
توجه : در صورت مشاهده بهم ریختگی احتمالی در متون زیر ،دلیل ان کپی کردن این مطالب از داخل فایل ورد می باشد و در فایل اصلی فایل ورد کامل مقاله نکات جذاب در ریاضیات؛ تحلیل علمی پدیدههای شگفتانگیز و کاربردهای نوین در علوم مختلف،به هیچ وجه بهم ریختگی وجود ندارد
بخشی از متن فایل ورد کامل مقاله نکات جذاب در ریاضیات؛ تحلیل علمی پدیدههای شگفتانگیز و کاربردهای نوین در علوم مختلف :
مطالب جالب ریاضی
ریاضیات در گذشته چگونه بود؟
از قدیم ریاضی به دو دسته ی حساب و هندسه تقسیم میشده در یونان بیشتر ریاضیدانان بزرگ به علم هندسه پرداخته اند زیرا در آن زمان که یونانی ها برده داری میکردند علومی را که کاربردی بود تحقیر میکردند زیرا آنها تمام کارها و علوم کاربردی را مختص برده ها می دانستند و چون فکر میکردند که علم هندسه کاربردی ندارد به علم هندسه پرداختند و کشفهای زیادی را در هندسه به دست آوردند
ولی در زمینه ی حساب ضعف های زیادی داشتند البته در چند سده ی آخر که بیشتر دانشمندان به اسکندریه رو آورده بودند کارهای اندکی در زمینه ی ریاضیات محاسبهای داشتند.یونانی ها حتی نتوانستند راه ساده ای برای عدد نویسی پیشنهاد کنند و عددها را به کمک حروف الفبا مینوشتند. اما در سده ها و هزاره های پیش از دانش یونان مردمی که در سرزمینهای ایران، بابل، مصر، چین و جاهای دیگر زندگی می کردند از آن جا که به کاربرد های ریاضیات نظر داشتند نه تنها در عدد نویسی، که به طور کلی در زمینه های مختلف ریاضیات محاسبه ای، بسیار پیشرفته بودند و با عددهای کوچک و بزرگ کار می کردند.
روابط جالب در ریاضی
۱=۱×۱
۱۲۱=۱۱×۱۱
۱۲۳۲۱=۱۱۱×۱۱۱
۱۲۳۴۳۲۱=۱۱۱۱×۱۱۱۱
۲۱۲۱=۲۱×۱۰۱
۳۸۳۸=۳۸×۱۰۱
۹۳۹۳=۹۳×۱۰۱
قانون: هر عددی در ۱۰۱ ضرب شود در حاصل دوبار تکرار می شود
ابتکار گوس
در ریاضیات آنچه که مهم است فکر کردن، استدلال کردن و نتیجه گرفتن است . ریاضیات راهی برای اندیشیدن و روشی برای استدلال و درست فکرکردن است . استدلال وسیلهای است که به کمک آن میتوان از روی اطلاعاتی که داریم حقایقی را کشف کنیم . البته ریاضیات به تجربه و مشاهده نیز مربوط می شود ولی قسمت اعظم آن همان اندیشیدن، استدلال کردن و نتیجه گرفتن است.
گوس ریاضی دان آلمانی ده ساله بود. روزی معلم از دانش آموزان کلاس خواست که مداد و کاغذ بردارند و حاصل جمع اعداد ۱۰۰ تا۱ را به دست آورند. دو دقیقه نگذشته بود که معلم گوس را دید که به کار دیگری مشغول است از او پرسید : چرا مسأله را حل نمی کنی؟ او جواب داد: تمام شد. معلم با ناراحتی گفت: این غیر ممکن است ولی کوس گفت: خیلی هم آسان بود
اول چنین نوشتم : ۱۰۰+۹۹+۹۸+۹۷+;+۳+۲+۱
و بعد چنین: ۱+۲+۳+;+۹۶+۹۷+۹۸+۹۹+۱۰۰
و جفت جفت از اول با آخر جمع کردم :
۱۰۱+۱۰۱+۱۰۱+;+۱۰۱+۱۰۱+۱۰۱+۱۰۱ بدین ترتیب ۵۰ تا عدد ۱۰۱ به دست آوردم که حاصل جمع آنها
میشود ۵۰۵۰=۱۰۱×۵۰ پس حاصل جمع اعداد ۱ تا۱۰۰
میشود ۵۰۵۰
پلهای کونیسبرگ
در این شکل از یک نقطه شروع کرده از روی همه ی خطها (پلها) فقط یک بار رد شده و به نقطه اولیه باز گردید
اویلر ریاضیدان مشهور ثابت کرده است که این کار امکان پذیر نیست.او نشان داد که عبور از خطها مانند مساله یافتن دوری است که از یک نقطه شروع و تمام خطها را فقط یک بار طی کرده و به نقطه شروع برسیم.اگر چنین دوری پیدا شود باید در طول مسیر به هر نقطه ای که میرسیم دو خط (یال)به ان نقطه برسد; یک راه ورودی و یک راه خروجی.البته بجز دو نقطه , یعنی نقطه ای که مسیر شروع میشود و دیگر وقتی که مسیر به پایان میرسد ,
تعداد خطهایی (یالهایی)که از یک نقطه (راس)منشعب میشود , باید عددی زوج باشد.در صورتی که در مورد پلهای کونیسبرگ این امکان وجود نداشت; چون نقاط (راسهای) A , B , C , D با تعداد خطهای (یالهای)فرد به نقاط (راسهای)دیگر وضل میشد.هم اکنون مساله پلها با قرار دادن خط هشتم(پل هشتم)حل شده است.ایا شما میتوانید با قرار دادن یک خط این مساله را حل کنید؟؟؟
پارادوکس حرکت!!
یک روز زنون از اهالی الئا یکی از فلاسفه بزرک یونان که شیفته پارادوکسها بود اعلام کرد :(( حرکت غیر ممکن است)) او استدلال کرد برای به هدف رسیدن یک پیکان, ان پیکان ابتدا باید نصف مسافت را طی کند, سپس نصف مسافت باقیمانده را به همین صورت تا اخر;به طوری که به نظر میرسد پیکان هرگز به هدف نخواهد رسید(قضیه limit ).اما در واقع از انجا که مسافتها کوچکتر پی در پی کوتاهتر میرسد به این نتیجه میرسیم که پیکان به هدف خواهد رسید.
شانس
در حالت کلی وقتی یک پدیده ای به شکل تصادفی رخ نیدهد احتمال به وقوع پیوستن پیشامد خاصی از این پدیده قابل محاسبه است.برای به دست اوردن احتمال کافی است تعداد حالتهای مطلوب برای به وقوع پیوستن ان پیشامد خاص را بر تعداد کل حالتهای ممکن تقسیم کنیم .به طور مثال وقتی از بین کارتهای ۱ تا ۱۰ کارتی تصادفی بر میداریم احتمال ان که عدد اول را بر داشته باشیم برابر است با چهار دهم زیرا کل حالتها ۱۰ و تعداد حالتهای مطلوب (اعداد اول بین ۱ تا ۱۰ )۴ است.
رابطه فیبوناچی
قضیه اویلر
”سریهای جالب”
دستگاه شمارش دودویی
۱+۱=۱۰
دستگاه شمارش دودیی را لایب نیتز ریاضی دان المانی کشف کرده است.رایانه ها طوری طراحی شده اند که برای محاسبه از این دستگاه شمارش استفاده کنند و محاسبه های پیچیده انجام دهند
ریاضیات در گذشته چگونه بود؟
از قدیم ریاضی به دو دسته ی حساب و هندسه تقسیم میشده در یونان بیشتر ریاضیدانان بزرگ به علم هندسه پرداخته اند زیرا در آن زمان که یونانی ها برده داری میکردند
علومی را که کاربردی بود تحقیر میکردند زیرا آنها تمام کارها و علوم کاربردی را مختص برده ها می دانستند و چون فکر میکردند که علم هندسه کاربردی ندارد به علم هندسه پرداختند و کشفهای زیادی را در هندسه به دست آوردند ولی در زمینه ی حساب ضعف های زیادی داشتند البته در چند سده ی آخر که بیشتر دانشمندان به اسکندریه رو آورده بودند کارهای اندکی در زمینه ی ریاضیات محاسبهای داشتند
.یونانی ها حتی نتوانستند راه ساده ای برای عدد نویسی پیشنهاد کنند و عددها را به کمک حروف الفبا مینوشتند. اما در سده ها و هزاره های پیش از دانش یونان مردمی که در سرزمینهای ایران، بابل، مصر، چین و جاهای دیگر زندگی می کردند از آن جا که به کاربرد های ریاضیات نظر داشتند نه تنها در عدد نویسی، که به طور کلی در زمینه های مختلف ریاضیات محاسبه ای، بسیار پیشرفته بودند و با عددهای کوچک و بزرگ کار می کردند.
ریاضیات در گذشته چگونه بود؟
از قدیم ریاضی به دو دسته ی حساب و هندسه تقسیم میشده در یونان بیشتر ریاضیدانان بزرگ به علم هندسه پرداخته اند زیرا در آن زمان که یونانی ها برده داری میکردند علومی را که کاربردی بود تحقیر میکردند زیرا آنها تمام کارها و علوم کاربردی را مختص برده ها می دانستند و چون فکر میکردند که علم هندسه کاربردی ندارد به علم هندسه پرداختند و کشفهای زیادی را در هندسه به دست آوردند
ولی در زمینه ی حساب ضعف های زیادی داشتند البته در چند سده ی آخر که بیشتر دانشمندان به اسکندریه رو آورده بودند کارهای اندکی در زمینه ی ریاضیات محاسبهای داشتند.یونانی ها حتی نتوانستند راه ساده ای برای عدد نویسی پیشنهاد کنند و عددها را به کمک حروف الفبا مینوشتند. اما در سده ها و هزاره های پیش از دانش یونان مردمی که در سرزمینهای ایران، بابل، مصر، چین و جاهای دیگر زندگی می کردند از آن جا که به کاربرد های ریاضیات نظر داشتند نه تنها در عدد نویسی، که به طور کلی در زمینه های مختلف ریاضیات محاسبه ای، بسیار پیشرفته بودند و با عددهای کوچک و بزرگ کار می کردند.
روابط جالب در ریاضی
۱=۱×۱
۱۲۱=۱۱×۱۱
۱۲۳۲۱=۱۱۱×۱۱۱
۱۲۳۴۳۲۱=۱۱۱۱×۱۱۱۱
;
۲۱۲۱=۲۱×۱۰۱
۳۸۳۸=۳۸×۱۰۱
۹۳۹۳=۹۳×۱۰۱
قانون: هر عددی در ۱۰۱ ضرب شود در حاصل دوبار تکرار می شود
ابتکار گوس
در ریاضیات آنچه که مهم است فکر کردن، استدلال کردن و نتیجه گرفتن است . ریاضیات راهی برای اندیشیدن و روشی برای استدلال و درست فکرکردن است . استدلال وسیلهای است که به کمک آن میتوان از روی اطلاعاتی که داریم حقایقی را کشف کنیم . البته ریاضیات به تجربه و مشاهده نیز مربوط می شود ولی قسمت اعظم آن همان اندیشیدن، استدلال کردن و نتیجه گرفتن است.
گوس ریاضی دان آلمانی ده ساله بود. روزی معلم از دانش آموزان کلاس خواست که مداد و کاغذ بردارند و حاصل جمع اعداد ۱۰۰ تا۱ را به دست آورند. دو دقیقه نگذشته بود که معلم گوس را دید که به کار دیگری مشغول است از او پرسید : چرا مسأله را حل نمی کنی؟ او جواب داد: تمام شد. معلم با ناراحتی گفت: این غیر ممکن است ولی کوس گفت: خیلی هم آسان بود
اول چنین نوشتم : ۱۰۰+۹۹+۹۸+۹۷+;+۳+۲+۱
و بعد چنین: ۱+۲+۳+;+۹۶+۹۷+۹۸+۹۹+۱۰۰
و جفت جفت از اول با آخر جمع کردم :
۱۰۱+۱۰۱+۱۰۱+;+۱۰۱+۱۰۱+۱۰۱+۱۰۱ بدین ترتیب ۵۰ تا عدد ۱۰۱ به دست آوردم که حاصل جمع آنها
میشود ۵۰۵۰=۱۰۱×۵۰ پس حاصل جمع اعداد ۱ تا۱۰۰
میشود ۵۰۵۰
پلهای کونیسبرگ
در این شکل از یک نقطه شروع کرده از روی همه ی خطها (پلها) فقط یک بار رد شده و به نقطه اولیه باز گردید.
اویلر ریاضیدان مشهور ثابت کرده است که این کار امکان پذیر نیست.او نشان داد که عبور از خطها مانند مساله یافتن دوری است که از یک نقطه شروع و تمام خطها را فقط یک بار طی کرده و به نقطه شروع برسیم.اگر چنین دوری پیدا شود باید در طول مسیر به هر نقطه ای که میرسیم دو خط (یال)به ان نقطه برسد;
یک راه ورودی و یک راه خروجی.البته بجز دو نقطه , یعنی نقطه ای که مسیر شروع میشود و دیگر وقتی که مسیر به پایان میرسد , تعداد خطهایی (یالهایی)که از یک نقطه (راس)منشعب میشود , باید عددی زوج باشد.در صورتی که در مورد پلهای کونیسبرگ این امکان وجود نداشت; چون نقاط (راسهای) A , B , C , D با تعداد خطهای (یالهای)فرد به نقاط (راسهای)دیگر وضل میشد.هم اکنون مساله پلها با قرار دادن خط هشتم(پل هشتم)حل شده است.ایا شما میتوانید با قرار دادن یک خط این مساله را حل کنید؟؟؟
پارادوکس حرکت!!
یک روز زنون از اهالی الئا یکی از فلاسفه بزرک یونان که شیفته پارادوکسها بود اعلام کرد :(( حرکت غیر ممکن است. )) او استدلال کرد برای به هدف رسیدن یک پیکان, ان پیکان ابتدا باید نصف مسافت را طی کند, سپس نصف مسافت باقیمانده را به همین صورت تا اخر;به طوری که به نظر میرسد پیکان هرگز به هدف نخواهد رسید(قضیه limit ).اما در واقع از انجا که مسافتها کوچکتر پی در پی کوتاهتر میرسد به این نتیجه میرسیم که پیکان به هدف خواهد رسید.
قضیه اخر فرما
شانس
در حالت کلی وقتی یک پدیده ای به شکل تصادفی رخ نیدهد احتمال به وقوع پیوستن پیشامد خاصی از این پدیده قابل محاسبه است.برای به دست اوردن احتمال کافی است تعداد حالتهای مطلوب برای به وقوع پیوستن ان پیشامد خاص را بر تعداد کل حالتهای ممکن تقسیم کنیم .به طور مثال وقتی از بین کارتهای ۱ تا ۱۰ کارتی تصادفی بر میداریم احتمال ان که عدد اول را بر داشته باشیم برابر است با چهار دهم زیرا کل حالتها ۱۰ و تعداد حالتهای مطلوب (اعداد اول بین ۱ تا ۱۰ )۴ است.
دنباله فیبوناچی
قضیه اویلر
”سریهای جالب”
دستگاه شمارش دودویی
۱+۱=۱۰
دستگاه شمارش دودیی را لایب نیتز ریاضی دان المانی کشف کرده است.رایانه ها طوری طراحی شده اند که برای محاسبه از این دستگاه شمارش استفاده کنند و محاسبه های پیچیده انجام دهند.
دودویی دهدهی دودویی دهدهی
۱۰۰۰ ۸ ۰ ۰
۱۰۰۱ ۹ ۱ ۱
۱۰۱۰ ۱۰ ۱۰ ۲
۱۰۱۱ ۱۱ ۱۱ ۳
۱۱۰۰ ۱۲ ۱۰۰ ۴
۱۱۰۱ ۱۳ ۱۰۱ ۵
۱۱۱۰ ۱۴ ۱۱۰ ۶
۱۱۱۱ ۱۵ ۱۱۱ ۷
۵+۶=۱۱ ۱۰۱
۱۱۰+
۱۰۱۱
۱۳+۹=۲۲ ۱۱۰۱
۱۰۰۱+
۱۰۱۱۰
هر عدد در مبنای دودویی را میتوان به این صورت در مبنای دهدهی نمایش داد:
۲۰*۱+ ۲۱*۰+ ۲۲*۰+ ۲۳*۰ + ۲۴*۱+ ۲۵*۱= ۲(۱۱۰۰۰۱)
۴۹ = ۱+۰+۰+۰+۱۶+۳۲=
- لینک دانلود فایل بلافاصله بعد از پرداخت وجه به نمایش در خواهد آمد.
- همچنین لینک دانلود به ایمیل شما ارسال خواهد شد به همین دلیل ایمیل خود را به دقت وارد نمایید.
- ممکن است ایمیل ارسالی به پوشه اسپم یا Bulk ایمیل شما ارسال شده باشد.
- در صورتی که به هر دلیلی موفق به دانلود فایل مورد نظر نشدید با ما تماس بگیرید.
یزد دانلود |
دانلود فایل علمی 