فایل ورد کامل مقاله پژوهشی درباره مفهوم انتگرال و تحلیل کاربردهای آن در ریاضیات، فیزیک و مهندسی


در حال بارگذاری
10 جولای 2025
فایل ورد و پاورپوینت
20870
1 بازدید
۹۹,۰۰۰ تومان
خرید

توجه : به همراه فایل word این محصول فایل پاورپوینت (PowerPoint) و اسلاید های آن به صورت هدیه ارائه خواهد شد

 فایل ورد کامل مقاله پژوهشی درباره مفهوم انتگرال و تحلیل کاربردهای آن در ریاضیات، فیزیک و مهندسی دارای ۱۴ صفحه می باشد و دارای تنظیمات در microsoft word می باشد و آماده پرینت یا چاپ است

فایل ورد فایل ورد کامل مقاله پژوهشی درباره مفهوم انتگرال و تحلیل کاربردهای آن در ریاضیات، فیزیک و مهندسی  کاملا فرمت بندی و تنظیم شده در استاندارد دانشگاه  و مراکز دولتی می باشد.

توجه : در صورت  مشاهده  بهم ریختگی احتمالی در متون زیر ،دلیل ان کپی کردن این مطالب از داخل فایل ورد می باشد و در فایل اصلی فایل ورد کامل مقاله پژوهشی درباره مفهوم انتگرال و تحلیل کاربردهای آن در ریاضیات، فیزیک و مهندسی،به هیچ وجه بهم ریختگی وجود ندارد


بخشی از متن فایل ورد کامل مقاله پژوهشی درباره مفهوم انتگرال و تحلیل کاربردهای آن در ریاضیات، فیزیک و مهندسی :

روش‌های تدریس ریاضی که عموماً مبتنی بر تلقین و تحمیل نظریات است و در سایه تمرین و تکرار به بالاترین سطوح محفوظات دانش‌آموزان می پردازد منسوخ است زیرا با این روش ها ممکن نیست اندیشه ریاضی را در دانش‌آموزان پرورش داد.
میان قواعدگوناگون و وادار کردن دانش‌آموزان به تمرین و تکرار، علاقه و دلبستگی آنان را به ریاضیات می خشکاند و مانع رشد و تکامل عقل آنان می‌شود.
به گفته پولیا، حل مسئله شامل چهار مرحله‌ی فهم مسئله، طراحی نقشه، اجرای نقشه و دوباره‌نگری است.
دانش‌آموزان درک مفهومی را از طریق تفسیر اصول ریاضی در یک مسئله و ترجمه‌ی این ایده‌ها به یک بازنمایی منسجم ریاضی با استفاده از حقایق مهم مسأله به نمایش می‌گذارند.
دانش‌آموزان زمانی درک مفهومی خوبی از ریاضی را در یک مسئله نشان می‌دهند که بازنمایی مناسب را انتخاب کرده و از اطلاعات مرتبط استفاده کنند، اصطلاحات ریاضی را با دقت به کار برند و رویه های ریاضی قابل کاربرد را انتخاب نمایند. اما دانش‌آموزانی که به حفظ کردن روی می‌آورند، فاقد فهم و درک بوده و احتمالاً احساس رضایت اندکی خواهند داشت و شاید به طور کامل از یادگیری دست بکشند. در حقیقت شواهد نشان می‌دهند که اگر دانش‌آموزان، با تکرار و به شکل طوطی وار به حفظ کردن و تمرین کردن رویه ها بپردازند، برایشان مشکل خواهد بود که در آینده دوباره به این مفاهیم برگشته و درک عمیق‌تری از مفاهیم ریاضی که در پس آن رویه ها قرار دارد، پیدا کند. در این مقاله سعی کردم انتگرال را به صورت مفهومی بیان کنم. اکثر دانش آموزان قواعد انتگرال‌گیری را به خوبی می‌دانند و بسیاری از مسائل را می‌توانند حل کنند ولی اگر از آنها پرسیده شود انتگرال چیست؟ اکثر آنها نمی دانند انتگرال چیست و چرا انتگرال می گیریم.

انتگرال چیست؟
انتگرال چیست؟ انتگرال یعنی مجموع یا مجتمع. در الکترونیک به واژه IC برخورد می‌کنیم که مخفف کلمه Integrated Circuit و به مفهوم مجتمع تعدادی مقاومت الکتریکی، خاذن ها، ترانزیستورها دیودها و غیره می‌باشد.
از واژه انتگرال ( Integral) در ریاضی نیز به همین معنی ولی به طور اخص مجموع بی‌نهایت کوچک‌ها مفهوم می شود. مثلاً می‌گوئیم مجموع نقاط یک خط است. به عبارت دیگر از انتگرال نقطه ها یعنی جمع نقطه هایی که کنار هم قرار گیرند، خط حاصل می‌شود. پس به صورت دستوری، می توانیم بنویسیم :
( نقطه ها ) مجموع = خط
اگر نخواهیم به صورت انشائی بنویسیم یا برای سهولت نوشتن، از علائمی استفاده می‌کنیم.
از آنجا که خط یک طول است، و طول را معمولاً به x‌ نمایش می دهیم، می توان از این حرف استفاده کرد. البته هر حرف دیگری را هم می‌توان بکار برد، حتی خودکلمه را، ولی اگر از کلمه خط استفاده شود فقط خود ما یا فارسی زبان ها به معنی آن واقف خواهند بود. برای تفهیم بین المللی است که از حرف x یا این قبیل حروف بهره گرفته می شود. پس می‌توان نوشت :
( نقطه ها ) مجموع = x
علامت جمع در لاتین و در انگلیسی S است. این حرف Sum و به معنی جمع است و معمول شده است که آنرا کمی طویل بنویسند تا بر محتویات بعدی محاط باشد لذا به صورت ( ) نمایش می‌دهند. پس رابطه فوق به شکل زیر جلوه می کند.
( نقطه ها ) = x
ولی نقطه چیست؟ آنطور که در دبستان آموخته‌ایم نقطه هیچ بعد یا اندازه ای ندارد ولی این تعریف نمی تواند صحت داشته باشد چه مجموع هیچ باز هم هیچ است نه خط.
تعریف درست آنست که نقطه نیز داراری سه بعد یا سه اندازه طول، عرض و عمق یا ارتفاع است. ولی این ابعاد به قدری کوچک هستند که تقریباً صفرند ولی به هر حال وجود دارند.
اندازه های خیلی کوچک را به d نمایش می‌دهیم. بنابراین طول، عرض و ارتفاع نقطه را به ترتیب به dx و dy و dz می‌نمایانیم. استدلال می‌کنیم که چون نقاط با طول‌های بسیار کوچک dx کنار هم چیده شوند، خطی به طول x تشکیل می‌شود

  راهنمای خرید:
  • لینک دانلود فایل بلافاصله بعد از پرداخت وجه به نمایش در خواهد آمد.
  • همچنین لینک دانلود به ایمیل شما ارسال خواهد شد به همین دلیل ایمیل خود را به دقت وارد نمایید.
  • ممکن است ایمیل ارسالی به پوشه اسپم یا Bulk ایمیل شما ارسال شده باشد.
  • در صورتی که به هر دلیلی موفق به دانلود فایل مورد نظر نشدید با ما تماس بگیرید.