فایل ورد کامل تحقیق پژوهشی درباره پی یر دو فرما و بررسی دستاوردهای ریاضی، نظریه‌ها و تأثیرات تاریخی


در حال بارگذاری
10 جولای 2025
فایل ورد و پاورپوینت
20870
1 بازدید
۹۹,۰۰۰ تومان
خرید

توجه : به همراه فایل word این محصول فایل پاورپوینت (PowerPoint) و اسلاید های آن به صورت هدیه ارائه خواهد شد

 فایل ورد کامل تحقیق پژوهشی درباره پی یر دو فرما و بررسی دستاوردهای ریاضی، نظریه‌ها و تأثیرات تاریخی دارای ۲۸ صفحه می باشد و دارای تنظیمات در microsoft word می باشد و آماده پرینت یا چاپ است

فایل ورد فایل ورد کامل تحقیق پژوهشی درباره پی یر دو فرما و بررسی دستاوردهای ریاضی، نظریه‌ها و تأثیرات تاریخی  کاملا فرمت بندی و تنظیم شده در استاندارد دانشگاه  و مراکز دولتی می باشد.

توجه : در صورت  مشاهده  بهم ریختگی احتمالی در متون زیر ،دلیل ان کپی کردن این مطالب از داخل فایل ورد می باشد و در فایل اصلی فایل ورد کامل تحقیق پژوهشی درباره پی یر دو فرما و بررسی دستاوردهای ریاضی، نظریه‌ها و تأثیرات تاریخی،به هیچ وجه بهم ریختگی وجود ندارد


بخشی از متن فایل ورد کامل تحقیق پژوهشی درباره پی یر دو فرما و بررسی دستاوردهای ریاضی، نظریه‌ها و تأثیرات تاریخی :

پیر فرما (Pierre de Fermat) در سال ۱۶۰۱ در نزدیکی مونتابن (Montauban) فرانسه متولد شد. او فرزند یک تاجر چرم بود و تحصیلات اولیه خود را در منزل گذراند. سپس برای احراز پست قضاوت به تحصیل حقوق پرداخت و بعد ها بعنوان مشاور در پارلمان محلی شهر تولوز (Toulouse) انتخاب شد.
او باوجود علاقه بسیاری که به ریاضیات داشت هرگز بصورت رسمی و حرفه ای به این علم نپرداخت اما با این حال بسیاری او را بزرگترین ریاضی دان قرن هفدهم می دانند. او در سن ۶۴ سالگی در شهر کاستر (Caster) در گذشت.
قضیه ها
فرما برای تفریح به ریاضیات می پرداخت و امروزه بسیاری از اکتشافت او بعنوان مهمترین قضایا در ریاضیات مطرح می باشند. زمینه های مورد علاقه او در ریاضیات بیشتر شامل نظریه اعداد، استفاده از هندسه تحلیلی در مقادیر بینهایت کوچک یا بزرگ و فعالیت در زمینه احتمالات بود.کارش در مورد مماسها الهام بخش نیوتن در طرح حساب دیفرانسیل و انتگرال شد.اصل مینیمم سازی فرما در اپتیک ،نتایج عمیقی در سراسر فیزیک بعد از او داشت.بالاتر از تمام اینها فرما به خاطر کارهایش در نظریه اعداد،در یادها مانده است.
از جمله قضایای زیبای او که به قضیه کوچک فرما معرف شده است می توان به این مورد اشاره کرد. اگر p یک عدد اول باشد و a یک عدد طبیعی در آنصورت بر p قابل قسمت خواهد بود.
اثبات این قضیه از طریق استقرای ریاضی بسیار ساده است. این قضیه حالت عمومی تر دو قضیه دیگر در ریاضیات هست یکی قضیه ای منسوب به اویلر (Euler) و دیگری قضیه ای معروف به همنهشتی چینی (Chinese Hypothesis).
از دیگر قضایایی که او در طول زندگی خود ارائه کرد می توان به موارد زیادی اشاره کرد از جمله : “اگر a و b و c اعداد صحیح باشند و باشد در آنصورت ab نمی تواند مربع یک عدد صحیح باشد.” اولین بار برای این قضیه لاگرانژ (Lagrange) راه حلی استادانه ارائه کرد.
شاید جنجالی ترین قضیه ای که حتی خود فرما برای آن توضیح یا اثباتی ارائه نکرده است قضیه آخر او باشد که اینگونه است:

معادله در دامنه اعداد صحیح برای مقادیر بزگتر از ۲ پاسخ ندارد.
این معادله ساده و فریبنده سالهای سال برای ریاضیدانان دردسر بزرگی بوده است چرا که فرما در حاشیه یکی از یادداشت های خود نوشته بود : “من برای این قضیه اثبات بسیار حیرت آوری (Marvelous) دارم.” اما متاسفانه هرگز در میان نوشته های او اثبات این قضیه پیدا نشد و تاریخ همواره در شک و شبهه مانده است که آیا او این قضیه را اثبات کرده است یا خیر.
با وجود آنکه این قضیه تاکنون مورد علاقه بسیاری از ریاضی دانان بوده و بسیاری هم به ظاهر برای آن راه حل ارائه کرده اند اما بنظر می رسد هیچکدام از آنها استدلالهای کاملی نبوده و در نهایت این قضیه بنظر اثبات نشدنی می آید.
انتگرال
در حساب دیفرانسیل و انتگرال ، از انتگرال یک تابع برای عمومیت دادن به محاسبه مساحت ، حجم ، جرم یک تابع استفاده می شود. فرایند پیدا کردن جواب انتگرال را انتگرال گیری گویند.البته تعاریف متعددی برای انتگرال گیری وجود دارد ولی در هر حال جواب مشابه ای از این تعاریف بدست می آید. انتگرال یک تابع مثبت پیوسته در بازه (a,b) در واقع پیدا کردن مساحت بین خطوط x=0 , x=10 و خم منفی F است . پس انتگرال F بین a و b در واقع مساحت زیر نمودار است. اولین بار لایب نیتس نماد استانداری برای انتگرال معرفی کرد و به عنوان مثال انتگرال f بین a و b رابه صورت نشان می دهند علامت ،انتگرال گیری از تابع f را نشان می دهند ،aو b نقاط ابتدا و انتهای بازه هستند و f تابعی انتگرال پذیر است و dx نمادی برای متغیر انتگرال گیری است.

انتگرال یک تابع مساحت زیر نمودار آن تابع است.

از لحاظ تاریخی dx یک کمیت بی نهایت کوچک را نشان می دهد. هر چند در تئوریهای جدید، انتگرال گیری بر پایه متفاوتی پایه گذاری شده است به عنوان مثال تابع f را بین x=0 تا x=10 در نظر بگیرید ،مساحت زیر نمودار در واقع مساحت مستطیل خواهدبود که بین x=0 ،x=10 ،y=0 ،y=3 محصور شده است یعنی دارای طول ۱۰ و عرض ۳است پس مساحت آن برابر ۳۰ خواهد بود .
اگر تابعی دارای انتگرال باشد به آن انتگرال پذیر گویند و تابعی که از انتگرال گیری از یک تابع حاصل می شود تابع اولیه گویند . اگر انتگرال گیری از تابع در یک محدوده خاص باشند به آن انتگرال معین گویند که نتیجه آن یک عدد است ولی اگر محدوده آن مشخص نباشد به آن انتگرال نامعین گویند.

  راهنمای خرید:
  • لینک دانلود فایل بلافاصله بعد از پرداخت وجه به نمایش در خواهد آمد.
  • همچنین لینک دانلود به ایمیل شما ارسال خواهد شد به همین دلیل ایمیل خود را به دقت وارد نمایید.
  • ممکن است ایمیل ارسالی به پوشه اسپم یا Bulk ایمیل شما ارسال شده باشد.
  • در صورتی که به هر دلیلی موفق به دانلود فایل مورد نظر نشدید با ما تماس بگیرید.