فایل ورد کامل تحقیق علمی درباره جبر خطی و هندسه تحلیلی و بررسی مفاهیم بنیادی، معادلات و کاربردهای مهندسی
توجه : به همراه فایل word این محصول فایل پاورپوینت (PowerPoint) و اسلاید های آن به صورت هدیه ارائه خواهد شد
فایل ورد کامل تحقیق علمی درباره جبر خطی و هندسه تحلیلی و بررسی مفاهیم بنیادی، معادلات و کاربردهای مهندسی دارای ۲۵ صفحه می باشد و دارای تنظیمات در microsoft word می باشد و آماده پرینت یا چاپ است
فایل ورد فایل ورد کامل تحقیق علمی درباره جبر خطی و هندسه تحلیلی و بررسی مفاهیم بنیادی، معادلات و کاربردهای مهندسی کاملا فرمت بندی و تنظیم شده در استاندارد دانشگاه و مراکز دولتی می باشد.
توجه : در صورت مشاهده بهم ریختگی احتمالی در متون زیر ،دلیل ان کپی کردن این مطالب از داخل فایل ورد می باشد و در فایل اصلی فایل ورد کامل تحقیق علمی درباره جبر خطی و هندسه تحلیلی و بررسی مفاهیم بنیادی، معادلات و کاربردهای مهندسی،به هیچ وجه بهم ریختگی وجود ندارد
بخشی از متن فایل ورد کامل تحقیق علمی درباره جبر خطی و هندسه تحلیلی و بررسی مفاهیم بنیادی، معادلات و کاربردهای مهندسی :
جبر خطی و هندسه تحلیلی
۱-۱ ماتریس
یک ماتریس از مرتبه n×m جدول مستطیلی از اعداد شامل m سطر و n ستون است که به صورت زیر آن را نمایش می دهیم:
که عنصطر سطرi ام و ستون j ام است را درایه (مولفه ) I,j ام ماتریس A می نامیم.
دو ماتریس A و B را مساوی گوییم هرگاه مرتبه های آنها با هم برابر باشد (هم مرتبه باشند) و درایه های متناظر آنها با هم مساوی باشد.
۱-۱-۱- معرفی برخی از ماتریس های خاص
۱) ماتریس سطری: اگر ماتریس A دارای یک سطر یعنی از مرتبه باشد آن را سطری از مرتبه n می نامیم.
۲) ماتریس ستونی: اگر ماتریس A دارای یک ستون یعنی از مرتبه باشد آن را ستونی از مرتبه m می نامیم.
۳) ماتریس صفر: ماتریسی که همه درایه های آن صفر است یعنی را ماتریس صفر نامیده و اگر از مرتبه باشد آن را با نماد نمایش می دهیم.
۴) ماتریس مربعی: ماتریسی که تعداد سطرها و ستون های آن با هم مساوی هستند را ماتریس مربعی می نامیم و اگر تعداد سطرهای آن nباشد به آن ماتریس مربعی از مرتبهn می گوییم.
۵) قطر اصلی: دریک ماتریس مربعی درایه های که برای آنها i=j باشد را درایه های قطری می نامیم و قطری که شامل این درایه هاست، قطر اصلی نامیده می شود.
۶) اثر (تریس) ماتریس : در هر ماتریس مربعی مجموع عناصر واقع بر قطر اصلی را اثر (تریس) A نامیده و با trA نمایش می دهیم یعنی در هر ماتریس مربعی از مرتبه n:
۷) ماتریس بالا و پایین مثلثی : ماتریس مربعی که همه درایه های زیر قطر اصلی آن صفر هستند یعنی
:
را ماتریس بالا مثلثی و ماتریس مربعی که درایه های بالای قطر اصلی آن صفر هستند، یعنی
:
را ماتریس پایین مثلثی می نامند.
۸) ماتریس قطری: ماتریس مربعی که هم بالا مثلثی و هم پایین مثلثی است یعنی درایه های خارج قطر اصلی آن صفر هستند ( : ( را ماتریس قطری می نامند.
۹) ماتریس همانی (واحد): ماتریس مربعی که همه عناصر خارج قطر اصلی آن صفر و درایه های قطر اصلی همگی ۱ باشند و به عبارتی
را ماتریس همانی می نامند و اگر از مرتبه n باشد آن را با نماد نمایش می دهند.
تذکر: معمولاً درایه های ماتریس را با نمایش می دهند.
۱-۱-۲- اعمال جبری روی ماتریس
۱) جمع: اگر A و B دو ماتریس از مرتبه باشند جمع آنها ماتریسی است که هر درایه آن از جمع درایه های متناظر در ماتریس های A و B بدست می آید به عبارتی اگر آنگاه
۲) تفریق : اگر A و B دو ماتریس از مرتبه باشند، تفاضل آنها یعنی ماتریسی است و
۳) ضرب عدد (اسکالر) در ماتریس : اگر A ماتریس و عددی دلخواه باشد و انگاه
یعنی اسکالر در تک تک مولفه های A ضرب می شود.
۴) ضرب: اگر و (تعداد سطرهای B با ستون های A برابر باشد) ماتریس حاصل ضرب آنها یعنی یک ماتریس است و
به عبارت دیگر از ضرب سطر j ام A در ستون j ام Bبه صورت مولفه به مولفه بدست می آید.
نکته ۱: اعمال جبری روی ماتریس ها تمامی خواص اعمال جبری روی اعداد (مانند جابه جایی، شرکت پذیری و … ) را دارند به جز آنکه ضرب ماتریس ها در حالت کلی خاصیت جابه جایی ندارد یعنی
نکته ۲: ماتریس همانی در ضرب، مانند عدد ۱ عضو خنثی است یعنی
و ماتریس صفر در جمع (مانند عدد ۰) عضو خنثی است یعنی
A+0=0+A=A
۵) توان های یک ماتریس: اگر A ماتریس مربعی و از مرتبه n باشد توان های مختلف آن قابل تعریف هستند به این صورت که و به طور کلی از ضرب A در به دست می آید.
نکته ۳: اگرA و B جابه جا شونده باشند یعنی اتحادهای جبری در مورد A و B برقرار خواهند بود مثلاً
و
نکته ۴: حاصل ضرب دو ماتریس بالا(پایین) مثلثی یک ماتریس بالا(پایین) مثلثی است که درایه های قطر اصلی آن از ضرب درایه های متناظر روی قطر بدست می آید.
نکته ۵: با توجه به نکته بالا اگر یک چندجمله ای و A ماتریس بالا (پایین) مثلثی باشد ماتریسی بالا (پایین) مثلثی است و درایه واقع بر قطر آن است.
نکته ۶: برای محاسبه سطر iام ماتریس AB کافی است سطر iام A را در ماتریس B ضرب کنیم و برای محاسبه ستون j ام ماتریس AB کافی است ماتریس A را در ستون j ام B ضرب کنیم.
- لینک دانلود فایل بلافاصله بعد از پرداخت وجه به نمایش در خواهد آمد.
- همچنین لینک دانلود به ایمیل شما ارسال خواهد شد به همین دلیل ایمیل خود را به دقت وارد نمایید.
- ممکن است ایمیل ارسالی به پوشه اسپم یا Bulk ایمیل شما ارسال شده باشد.
- در صورتی که به هر دلیلی موفق به دانلود فایل مورد نظر نشدید با ما تماس بگیرید.
یزد دانلود |
دانلود فایل علمی 