فایل ورد کامل پژوهش مخابراتی درباره پیادهسازی بلادرنگ کدک استاندارد G.728 بر روی پردازنده TMS320C5402
توجه : به همراه فایل word این محصول فایل پاورپوینت (PowerPoint) و اسلاید های آن به صورت هدیه ارائه خواهد شد
فایل ورد کامل پژوهش مخابراتی درباره پیادهسازی بلادرنگ کدک استاندارد G.728 بر روی پردازنده TMS320C5402 دارای ۱۱۹ صفحه می باشد و دارای تنظیمات در microsoft word می باشد و آماده پرینت یا چاپ است
فایل ورد فایل ورد کامل پژوهش مخابراتی درباره پیادهسازی بلادرنگ کدک استاندارد G.728 بر روی پردازنده TMS320C5402 کاملا فرمت بندی و تنظیم شده در استاندارد دانشگاه و مراکز دولتی می باشد.
این پروژه توسط مرکز فایل ورد کامل پژوهش مخابراتی درباره پیادهسازی بلادرنگ کدک استاندارد G.728 بر روی پردازنده TMS320C54022 ارائه میگردد
توجه : در صورت مشاهده بهم ریختگی احتمالی در متون زیر ،دلیل ان کپی کردن این مطالب از داخل فایل ورد می باشد و در فایل اصلی فایل ورد کامل پژوهش مخابراتی درباره پیادهسازی بلادرنگ کدک استاندارد G.728 بر روی پردازنده TMS320C5402،به هیچ وجه بهم ریختگی وجود ندارد
بخشی از متن فایل ورد کامل پژوهش مخابراتی درباره پیادهسازی بلادرنگ کدک استاندارد G.728 بر روی پردازنده TMS320C5402 :
کارشناسی ارشدفایل ورد کامل پژوهش مخابراتی درباره پیادهسازی بلادرنگ کدک استاندارد G.728 بر روی پردازنده TMS320C5402
چکیده
کدک صحبت استاندارد G.728 ، یک کدک کم تاخیر است که صحبت با کیفیت عالی را در نرخ بیت ۱۶ kbps ارائه می دهد و برای شبکه های تلفن ماهواره ای و اینترنت و موبایل که به تاخیر زیاد حساس هستند ، مناسب است. در این رساله به پیاده سازی بلادرنگ اینکدر و دیکدر G.728 بصورت دوطرفه کامل ( Full Duplex ) بر روی پردازنده TMS320C5402 می پردازیم .
روشی ترکیبی برای برنامه نویسی TMS ارائه می شود که در آن زمان وپیچیدگی برنامه نویسی نسبت به برنامه نویسی دستی به ۳۰% کاهش می یابد . در این روش پس از برنامه نویسی و شبیه سازی ممیزثابت الگوریتم کدک به زبان C ، با استفاده از نرم افزار ( Code Composer Studio ) CCS ، برنامه به زبان اسمبلی ترجمه شده و بهینه سازی دستی در کل کد اسمبلی صورت می گیرد . سپس بعضی از توابع مهم برنامه از نظر MIPS ، بصورت دستی به زبان اسمبلی بازنویسی می شوند تا برنامه بصورت بلادرنگ قابل اجرا گردد . در پایان نتایج این پیاده سازی ارائه می شود .
کلمات کلیدی
کدینگ و فشرده سازی صحبت ، پیاده سازی بلادرنگ ، DSP ، TMS320C5402 ، برد DSK
فایل ورد کامل پژوهش مخابراتی درباره پیادهسازی بلادرنگ کدک استاندارد G.728 بر روی پردازنده TMS320C5402
فهرست
– مقدمه ۴
فصل ۱ : بررسی و مدل سازی سیگنال صحبت
۱-۱- معرفی سیگنال صحبت ۶
۱-۲- مدل سازی پیشگویی خطی ۱۰
۱-۲-۱- پنجره کردن سیگنال صحبت ۱۱
۱-۲-۲- پیش تاکید سیگنال صحبت ۱۳
۱-۲-۳- تخمین پارامترهای LPC 14
فصل ۲ : روش ها و استانداردهای کدینگ صحبت
۲-۱- مقدمه ۱۵
۲-۲- روش های کدینگ ۱۹
۲-۲-۱- کدرهای شکل موج ۲۱
۲-۲-۲- کدرهای صوتی ۲۲ ۲-۲-۳- کدرهای مختلط ۲۴
الف- کدرهای مختلط حوزه فرکانس ۲۷
ب- کدرهای مختلط حوزه زمان ۲۹
فصل ۳ : کدر کم تاخیر LD-CELP
۳-۱- مقدمه ۳۴
۳-۲- بررسی کدرکم تاخیر LD-CELP 36
۳-۲-۱- LPC معکوس مرتبه بالا ۳۹
۳-۲-۲- فیلتر وزنی شنیداری ۴۲
۳-۲-۳- ساختار کتاب کد ۴۲
۳-۲-۳-۱- جستجوی کتاب کد ۴۳
۳-۲-۴- شبه دیکدر ۴۵
۳-۲-۵- پست فیلتر ۴۶
فصل ۴ : شبیه سازی ممیزثابت الگوریتم به زبان C
۴-۱- مقدمه ۴۹
۴-۲- ویژگی های برنامه نویسی ممیزثابت ۵۰
۴-۳- ساده سازی محاسبات الگوریتم ۵۳
۴-۳-۱- تطبیق دهنده بهره ۵۴
۴-۳-۲- محاسبه لگاریتم معکوس ۵۸
۴-۴- روندنمای برنامه ۵۹
۴-۴-۱- اینکدر ۶۳
۴-۴-۲- دیکدر ۶۹
فصل ۵ : پیاده سازی الگوریتم برروی DSP
۵-۱- مقدمه ۷۴
۵-۲- مروری بر پیاده سازی بلادرنگ ۷۵
۵-۳- چیپ های DSP 76
۵-۳-۱- DSP های ممیزثابت ۷۷
۵-۳-۲- مروری بر DSP های خانواده TMS320 78
۵-۳-۲-۱- معرفی سری TMS320C54x 79
۵-۴- توسعه برنامه بلادرنگ ۸۱
۵-۵- اجرای برنامه روی برد توسعه گر C5402 DSK 82
۵-۵-۱- بکارگیری ابزارهای توسعه نرم افزار ۸۴
۵-۵-۲- استفاده از نرم افزارCCS 86
۵-۵-۳- نتایج پیاده سازی ۹۴
۵-۶- نتیجه گیری و پیشنهاد ۹۷
– ضمائم
– ضمیمه (الف) : دیسکت برنامه های شبیه سازی ممیز ثابت به زبان C و
پیاده سازی کدک به زبان اسمبلی – ضمیمه (ب) : مقایسه برنامه نویسی C و اسمبلی ۹۸
– مراجع ۱۰۳
– مقدمه
امروزه در عصر ارتباطات و گسترش روزافزون استفاده از شبکه های تلفن ،موبایل و اینترنت در جهان ومحدودیت پهنای باند در شبکه های مخابراتی ، کدینگ و فشرده سازی صحبت امری اجتناب ناپذیر است . در چند دهه اخیر روشهای کدینگ مختلفی پدیدآمده اند ولی بهترین و پرکاربردترین آنها کدک های آنالیزباسنتز هستند که توسط Atal & Remedeدر سال ۱۹۸۲ معرفی شدند [۲] . اخیرا مناسبترین الگوریتم برای کدینگ صحبت با کیفیت خوب در نرخ بیت های پائین و زیر ۱۶ kbps ، روش پیشگویی خطی باتحریک کد (CELP) می باشد که در سال ۱۹۸۵ توسط Schroeder & Atal معرفی شد [۸] و تا کنون چندین استاندارد مهم کدینگ صحبت بر اساس CELP تعریف شده اند .
در سال ۱۹۸۸ CCITT برنامه ای برای استانداردسازی یک کدک ۱۶ kbps با تاخیراندک و کیفیت بالا در برابر خطاهای کانال آغاز نمود و برای آن کاربردهای زیادی همچون شبکه PSTN ،ISDN ،تلفن تصویری و غیره در نظر گرفت . این کدک در سال ۱۹۹۲ توسط Chen et al. تحت عنوان LD-CELP معرفی شد[۶] و بصورت استاندارد G.728 در آمد[۹] و در سال ۱۹۹۴ مشخصات ممیز ثابت این کدک توسط ITU ارائه شد[۱۰] . با توجه به کیفیت بالای این کدک که در آن صحبت سنتزشده از صحبت اولیه تقریبا غیرقابل تشخیص است و کاربردهای آن در شبکه های تلفن و اینترنت و ماهواره ای در این گزارش به پیاده سازی این کدک می پردازیم .
در فصل اول به معرفی وآنالیز سیگنال صحبت پرداخته می شود و در فصل دوم روش ها و استانداردهای کدینگ بیان می شوند . در فصل سوم کدک LD-CELP را بیشتر بررسی می کنیم و در فصل چهارم شبیه سازی ممیز ثابت الگوریتم به زبان C را بیان می نمائیم. ودر پایان در فصل ۵ به نحوه پیاده سازی بلادرنگ کدکG.728 بر روی پردازنده TMS320C5402 می پردازیم.
فصل ۱
بررسی و مدل سازی سیگنال صحبت
۱-۱ –معرفی سیگنال صحبت
صحبت در اثر دمیدن هوا از ریه ها به سمت حنجره و فضای دهان تولید میشود. در طول این مسیر در انتهای حنجره، تارهای صوتی[۱] قرار دارند. فضای دهان را از بعد از تارهای صوتی ، لوله صوتی[۲] مینا مند که در یک مرد متوسط حدود cm 17 طول دارد . در تولید برخی اصوات تارهای صوتی کاملاً باز هستند و مانعی بر سر راه عبور هوا ایجاد نمیکنند که این اصوات را اصطلاحاً اصوات بی واک [۳] مینامند. در دسته دیگر اصوات ، تارهای صوتی مانع خروج طبیعی هوا از حنجره میگردند که این باعث به ارتعاش درآمدن تارها شده و هوا به طور غیر یکنواخت و تقریباً پالس شکل وارد فضای دهان میشود. این دسته از اصوات را اصطلاحاً باواک[۴] میگویند.
فرکانس ارتعاش تارهای صوتی در اصوات باواک را فرکانس Pitch و دوره تناوب ارتعاش تارهای صوتی را پریود Pitch مینامند. هنگام انتشار امواج هوا در لوله صوتی، طیف فرکانس این امواج توسط لوله صوتی شکل میگیرد و بسته به شکل لوله ، پدیده تشدید در فرکانس های خاصی رخ میدهد که به این فرکانس های تشدید فرمنت[۵] میگویند.
از آنجا که شکل لوله صوتی برای تولید اصوات مختلف، متفاوت است پس فرمنت ها برای اصوات گوناگون با هم فرق میکنند. با توجه به اینکه صحبت یک فرآیند متغییر با زمان است پس پارامترهای تعریف شده فوق اعم از فرمنت ها و پریود Pitch در طول زمان تغییر میکنند به علاوه مد صحبت به طور نامنظمی از باواک به بی واک و بالعکس تغییر میکند. لوله صوتی ، همبستگی های زمان-کوتاه ، در حدود ۱ ms ، درون سیگنال صحبت را در بر میگیرد. و بخش مهمی از کار کدکننده های صوتی مدل کردن لوله صوتی به صورت یک فیلتر زمان-کوتاه میباشد. همان طور که شکل لوله صوتی نسبتاً آهسته تغییر میکند، تابع انتقال این فیلتر مدل کننده هم نیاز به تجدید[۶] ، معمولاً در هر ۲۰ms یکبارخواهد داشت.
در شکل (۱-۱ الف) یک قطعه صحبت باواک که با فرکانس ۸KHz نمونه برداری شده است دیده میشود. اصوات باواک دارای تناوب زمان بلند به خاطر پریود Pitch هستند که نوعاً بین ۲ms تا ۲۰ms میباشد. در اینجا پریود Pitch در حدود ۸ms یا ۶۴ نمونه است. چگالی طیف توان این قطعه از صحبت در شکل (۱-۱ ب) دیده میشود[۳].
اصوات بی واک نتیجه تحریک نویز مانند لوله صوتی هستند و تناوب زمان- بلند اندکی را در بر دارند ، همانگونه که در شکل های (۱-۱ ج) و (۱-۱ د) دیده میشود ولی همبستگی زمان کوتاه به خاطر لوله صوتی در آنها هنوز وجود دارد.
بطورکلی سیگنال صحبت دارای افزونگی[۷] زیادی است که ناشی از عوامل ذیل هستند:
ـ وابستگی های زمان-کوتاه : این وابستگی ها عمدتاً به کندی تغییرات صحبت با زمان و ساختار
( الف) (ب)
(ج) (د)
شکل (۱-۱) : مقایسه اصوات باواک و بی واک. (الف)و(ب) : باواک ، (ج)و(د) : بی واک
نسبتاً منظم فرمنت ها مربوط میشوند.
ـ وابستگی های زمان- بلند : که عمدتاً از طبیعت نیمه متناوب اصوات با واک و تغییرات آرام پریود Pitch ناشی میشوند.
ـتابع چگالی احتمال صحبت : علیرغم پیچیدگی آماری صحبت میتوان آن را با توابع چگالی احتمال شناخته شده تقریب زد. شکل لوله صوتی و مد تحریک آن به صورت نسبتاً آرام تغییر میکند و بنابراین صحبت را میتوان به صورت شبه ایستان در دوره های کوتاه زمانی (حدود ۲۰ms) در نظر گرفت و با یک فرآیند تصادفی ارگادیک در یک قطعه زمانی کوچک مدل نمود و طیف مشخصی برای آن در این قطعه زمانی بدست آورد.
علاوه بر افزونگی های فوق عامل مهم دیگری که کاهش نرخ داده سیگنال صحبت را ممکن می سازد، طبیعت غیر حساس گوش انسان نسبت به بسیاری از ویژگیهای این سیگنال میباشد.
– برنامه نویسی اسمبلی بصورت دستی
همانطور که در قسمت قبل دیدیم، کمپایلر C54x حتی با استفاده از optimizer هم نتوانست اجرای برنامه را به ۱۰۰ MIPS برساند. این بدین دلیل است که در خانواده C54x ،optimizer به حد کافی قوی نیست چراکه ما همین برنامه را با استفاده از optimizer پردازنده C55x کمپایل کردیم و به حدود ۴۰ MIPS برای اجرای آن برروی C55x نیاز بود.
به هرحال باید اجرای این برنامه را به ۱۰۰ MIPS برسانیم تا بتوان بصورت بلادرنگ آنرا پیاده سازی کرد. در این مرحله تنها راهی که باقی مانده اینست که بر روی توابع برنامه و MIIPS آنها و نتایج بدست آمده از مرحله قبل بررسی کرده تا توابع و قسمت هایی که به نظر میرسد Optimizer نتوانسته خوب بهینه سازد را بصورت دستی برنامه نویسی کنیم . واضح است که در این مرحله باید به زبان اسمبلی C54x تسلط کافی داشت تا بتوان کد اسمبلی تولید شده توسط کمپایلر C54x را بهینه کرد .
در ابتدا ملاحظه می شود که در محاسبات کورلیشن در بعضی از حلقه ها از دستور ضرب/انباشت MAC استفاده نشده و حلقه چند دستوری بوجود آمده است که می توان آنها را با استفاده از این دستور به حلقه تک سیکلی تبدیل کرد . همچنین در بعضی از حلقه های محاسبه انرژی نیز می توان از دستور تک سیکلی مجذور SQURA استفاده نمود.با انجام این اصلاحات MIPS برنامه کاهش یافت ولی هنوز فاصله زیادی با مقدار مورد نیاز ما دارد.
در این مرحله مهمترین توابع برنامه از نظر MIPS – همانطور که در شکل(۵-۹) دیده می شود -همچون LevinsonDurbin50() ،HybWin49() ، Block17_18() وBlock14_15() را بصورت دستی بازنویسی کردیم . در اینجا بعنوان نمونه به Block14_15() که کوچکتر است می پردازیم :
همانطور که در کد C این تابع درضمیمه (ب) دیده می شود ،تابع از ۳ حلقه تو در تو تشکیل شده است. حلقه بیرونی NCWD=128 بار ، حلقه میانی IDIM=5 بار و حلقه داخلی از ۱تا ۵ بار اجرا می گردند. سیکل دستورالعمل این تابع بیش از ۳۲۰۰۰ است(شکل(۵-۹)). در ادامه کد اسمبلی تولید شده توسط کمپایلربا حد اکثر بهینه سازی و کد بازنویسی شده بصورت دستی در این ضمیمه آورده شده است . در بازنویسی این بلوک به این نکته توجه شده که دستورالعمل های حلقه داخلی به حد اقل برسد چرا که این حلقه در ضریب ۱۲۸*۵=۶۴۰ ضرب می شود .
- لینک دانلود فایل بلافاصله بعد از پرداخت وجه به نمایش در خواهد آمد.
- همچنین لینک دانلود به ایمیل شما ارسال خواهد شد به همین دلیل ایمیل خود را به دقت وارد نمایید.
- ممکن است ایمیل ارسالی به پوشه اسپم یا Bulk ایمیل شما ارسال شده باشد.
- در صورتی که به هر دلیلی موفق به دانلود فایل مورد نظر نشدید با ما تماس بگیرید.
یزد دانلود |
دانلود فایل علمی 